

What readers are saying about

Pragmatic Unit Testing in C#. . .

“As part of the Mono project, we routinely create and

maintain extensive unit tests for our class libraries. This

book is a fantastic introduction for those interested in

creating solid code.”

Miguel de Icaza, Mono Project, Novell, Inc.

“Andy and Dave have created an excellent, practical and (of

course) very pragmatic guide to unit-testing, illustrated with

plenty of examples using the latest version of NUnit.”

Charlie Poole, NUnit framework developer

“Anybody coding in .NET or, for that matter, any language,

would do well to have a copy of this book, not just on their

bookshelf, but sitting open in front of their monitor. Unit

testing is an essential part of any programmer’s skill set, and

Andy and Dave have written (yet another) essential book on

the topic.”

Justin Gehtland, Founder, Relevance LLC

“The Pragmatic Programmers have done it again with this

highly useful guide. Aimed directly at C# programmers using

the most popular unit-testing package for the language, it

goes beyond the basics to show what you should test and

how you should test it. Recommended for all .NET

developers.”

Mike Gunderloy,

Contributing Editor, ADT Magazine

“Using the approaches described by Dave and Andy you can

reduce greatly the number of defects you put into your code.

The result will be faster development of better programs. Try

these techniques—they will work for you!”

Ron Jeffries, www.XProgramming.com

Pragmatic Unit Testing
in C# with NUnit, Second Edition

Andy Hunt

Dave Thomas

with Matt Hargett

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Bookshelf
Pragmatic

Many of the designations used by manufacturers and sellers to distinguish

their products are claimed as trademarks. Where those designations appear

in this book, and The Pragmatic Programmers, LLC was aware of a trademark

claim, the designations have been printed in initial capital letters or in all

capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic

Programming, Pragmatic Bookshelf and the linking “g” device are trademarks

of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the

publisher assumes no responsibility for errors or omissions, or for damages

that may result from the use of information (including program listings) con-

tained herein.

Our Pragmatic courses, workshops and other products can help you and your

team create better software and have more fun. For more information, as well

as the latest Pragmatic titles, please visit us at:

http://www.pragmaticprogrammer.com

Copyright c© 2007 The Pragmatic Programmers, LLC. All rights reserved. No

part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form, or by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9776166-7-3

ISBN-13: 978-0-9776166-7-4

http://www.pragmaticprogrammer.com

Contents

About the Starter Kit ix

Preface xi

1 Introduction 1

1.1 Coding With Confidence 2

1.2 What is Unit Testing? 3

1.3 Why Should I Bother with Unit Testing? 4

1.4 What Do I Want to Accomplish? 5

1.5 How Do I Do Unit Testing? 7

1.6 Excuses For Not Testing 8

1.7 Roadmap . 15

2 Your First Unit Tests 16

2.1 Planning Tests 17

2.2 Testing a Simple Method 18

2.3 Running Tests with NUnit 20

2.4 Running the Example 27

2.5 More Tests . 31

3 Writing Tests in NUnit 32

3.1 Structuring Unit Tests 32

3.2 Classic Asserts 34

3.3 Constraint-based Asserts 37

3.4 NUnit Framework 41

3.5 NUnit Test Selection 43

3.6 More NUnit Asserts 51

3.7 NUnit Custom Asserts 53

3.8 NUnit and Exceptions 54

3.9 Temporarily Ignoring Tests 57

CONTENTS vi

4 What to Test: The Right-BICEP 60

4.1 Are the Results Right? 61

4.2 Boundary Conditions 64

4.3 Check Inverse Relationships 66

4.4 Cross-check Using Other Means 67

4.5 Force Error Conditions 68

4.6 Performance Characteristics 69

5 CORRECT Boundary Conditions 71

5.1 Conformance . 72

5.2 Ordering . 74

5.3 Range . 75

5.4 Reference . 79

5.5 Existence . 81

5.6 Cardinality . 82

5.7 Time . 84

5.8 Try It Yourself . 86

6 Using Mock Objects 90

6.1 Stubs . 92

6.2 Fakes . 94

6.3 Mock Objects . 100

6.4 When Not To Mock 112

7 Properties of Good Tests 117

7.1 Automatic . 118

7.2 Thorough . 119

7.3 Repeatable . 122

7.4 Independent . 122

7.5 Professional . 123

7.6 Testing the Tests 125

8 Testing on a Project 129

8.1 Where to Put Test Code 129

8.2 Where to Put NUnit 132

8.3 Test Courtesy . 132

8.4 Test Frequency 135

8.5 Tests and Legacy Code 136

8.6 Tests and Code Reviews 139

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=vi

CONTENTS vii

9 Design Issues 143

9.1 Designing for Testability 143

9.2 Refactoring for Testing 146

9.3 Testing the Class Invariant 159

9.4 Test-Driven Design 161

9.5 Testing Invalid Parameters 163

10 GUI Testing 165

10.1 Unit testing WinForms 165

10.2 Unit testing beyond Windows Forms 169

10.3 Web UIs . 171

10.4 Command Line UIs 175

10.5 GUI Testing Gotchas 177

A Extending NUnit 180

A.1 Writing NUnit Extensions 180

A.2 Using NUnit Core Addins 182

B Gotchas 183

B.1 As Long As The Code Works 183

B.2 “Smoke” Tests 183

B.3 “Works On My Machine” 184

B.4 Floating-Point Problems 184

B.5 Tests Take Too Long 185

B.6 Tests Keep Breaking 186

B.7 Tests Fail on Some Machines 186

B.8 Tests Pass in One Test Runner, Not the Other . 187

B.9 Thread state issues 187

B.10 C# 2.0-specific Issues 188

C Resources 190

C.1 On The Web . 190

C.2 Bibliography . 192

D Summary: Pragmatic Unit Testing 194

E Answers to Exercises 195

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=vii

BETA BOOK viii

Beta
Book

Agile publishing for agile developers

The book you’re reading is still under development. As part of

our industry-leading Beta Book program, we’re releasing this

copy well before we normally would. That way you’ll be able

to get this content a couple of months before it’s available in

finished form, and we’ll get feedback to make the book even

better. The idea is that everyone wins!

Be warned. The book has not had a full technical edit, so it

will contain errors. It has not been copyedited, so it will be

full of typos. And there’s been no effort spent doing layout, so

you’ll find bad page breaks, over-long lines (with black boxes

at the end of line), incorrect hyphenations, and all the other

ugly things that you wouldn’t expect to see in a finished book.

We can’t be held liable if you use this book to try to create a

spiffy application and you somehow end up with a strangely

shaped farm implement instead. Despite all this, we think

you’ll enjoy it!

Throughout this process you’ll be able to download updated

PDFs from http://books.pragprog.com/titles/utc2/reorder.

When the book is finally ready, you’ll get the final version (and

subsequent updates) from the same address. In the mean-

time, we’d appreciate you sending us your feedback on this

book at http://books.pragprog.com/titles/utc2/errata.

Thank you for taking part in our Beta Book program.

Andy Hunt

http://books.pragprog.com/titles/utc2/reorder
http://books.pragprog.com/titles/utc2/errata
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=viii

About the Starter Kit

Our first book, The Pragmatic Programmer: From Journeyman

to Master, is a widely-acclaimed overview of practical topics

in modern software development. Since it was first published

in 1999, many people have asked us about follow-on books,

or sequels. Towards that end, we started our own publishing

company, the Pragmatic Bookshelf. By now we’ve got dozens

of titles in print and in development, major awards, and many

five star reviews.

But the very books we published are still some of the most im-

portant ones. Before embarking on any sequels to The Prag-

matic Programmer, we thought we’d go back and offer a pre-

quel of sorts.

Over the years, we’ve found that many of our pragmatic read-

ers who are just starting out need a helping hand to get their

development infrastructure in place, so they can begin form-

ing good habits early. Many of our more advanced pragmatic

readers understand these topics thoroughly, but need help

convincing and educating the rest of their team or organiza-

tion. We think we’ve got something that can help.

The Pragmatic Starter Kit is a three-volume set that covers

the essential basics for modern software development. These

volumes include the practices, tools, and philosophies that

you need to get a team up and running and super-productive.

Armed with this knowledge, you and your team can adopt

good habits easily and enjoy the safety and comfort of a well-

established “safety net” for your project.

Volume I, Pragmatic Version Control, describes how to use ver-

sion control as the cornerstone of a project. A project with-

ABOUT THE STARTER KIT x

out version control is like a word processor without an UNDO

button: the more text you enter, the more expensive a mis-

take will be. Pragmatic Version Control shows you how to use

version control systems effectively, with all the benefits and

safety but without crippling bureaucracy or lengthy, tedious

procedures.

This volume, Pragmatic Unit Testing, is the second volume in

the series. Unit testing is an essential technique as it provides

real-world, real-time feedback for developers as we write code.

Many developers misunderstand unit testing, and don’t real-

ize that it makes our jobs as developers easier. This volume

is available in two different language versions: in Java with

JUnit, and in C# with NUnit.

Volume III, Pragmatic Automation, covers the essential prac-

tices and technologies needed to automate your code’s build,

test, and release procedures. Few projects suffer from having

too much time on their hands, so Pragmatic Automation will

show you how to get the computer to do more of the mun-

dane tasks by itself, freeing you to concentrate on the more

interesting—and difficult—challenges.

These books are created in the same approachable style as

our first book, and address specific needs and problems that

you face in the trenches every day. But these aren’t dummy-

level books that only give you part of the picture; they’ll give

you enough understanding that you’ll be able to invent your

own solutions to the novel problems you face that we haven’t

addressed specifically.

For up-to-date information on these and other books, as well

as related pragmatic resources for developers and managers,

please visit us on the web at:

http://www.pragmaticprogrammer.com

Thanks, and remember to make it fun!

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=x

Preface

Welcome to the world of developer-centric unit testing! We

hope you find this book to be a valuable resource for yourself

and your project team. You can tell us how it helped you—

or let us know how we can improve—by visiting the Pragmatic

Unit Testing page on our web site1 and clicking on “Feedback.”

Feedback like that is what makes books great. It’s also what

makes people and projects great. Pragmatic programming is

all about using real-world feedback to fine tune and adjust

your approach.

Which brings us to unit testing. As we’ll see, unit testing is

important to you as a programmer because it provides the

feedback you need. Without unit testing, you may as well be

writing programs on a yellow legal pad and hoping for the best

when they’re run.

That’s not very pragmatic.

This book can help. It is aimed primarily at the C# program-

mer who has some experience writing and designing code, but

who does not have much experience with unit testing.

But while the examples are in C#, using the NUnit framework,

the concepts remain the same whether you are writing in C++,

Fortran, Ruby, Smalltalk, or VisualBasic. Testing frameworks

similar to NUnit exist for over 60 different languages; these

various frameworks can be downloaded for free.2

1http://www.pragmaticprogrammer.com/titles/utc2
2http://www.xprogramming.com/software.htm

http://www.pragmaticprogrammer.com/titles/utc2
http://www.xprogramming.com/software.htm

PREFACE xii

For the more advanced programmer, who has done unit test-

ing before, we hope there will be a couple of nice surprises for

you here. Skim over the basics of using NUnit and concen-

trate on how to think about tests, how testing affects design,

and how to handle certain team-wide issues you may be hav-

ing.

And remember that this book is just the beginning. It may be

your first book on unit testing, but we hope it won’t be your

last.

Where To Find The Code

Throughout the book you’ll find examples of C# code; some

of these are complete programs while others are fragments of

programs. If you want to run any of the example code or look

at the complete source (instead of just the printed fragment),

look in the margin: the filename of each code fragment in the

book is printed in the margin next to the code fragment itself.

Some code fragments evolve with the discussion, so you may

find the same source code file (with the same name) in the

main directory as well as in subdirectories that contain later

versions (rev1, rev2, and so on).

All of the code in this book is available via the Pragmatic Unit

Testing page on our web site.

Typographic Conventions

italic font Indicates terms that are being defined, or

borrowed from another language.

computer font Indicates method names, file and class

names, and various other literal strings.

xxx xx xx; Indicates unimportant portions of source

code that are deliberately omitted.

The “curves ahead” sign warns that this

material is more advanced, and can safely

be skipped on your first reading.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=xii

PREFACE xiii

“Joe the Developer,” our cartoon friend,

asks a related question that you may find

useful.

STOP
A break in the text where you should stop

and think about what’s been asked, or try

an experiment live on a computer before

continuing.

Language-specific Versions

As of this printing, Pragmatic Unit Testing is available in two

programming language-specific versions:

• in Java with JUnit

• in C# with NUnit

Acknowledgments from the First Edition

We’d especially like to thank the following Practitioners for

their valuable input, suggestions, and stories: Mitch Amiano,

Nascif Abousalh-Neto, Andrew C. Oliver, Jared Richardson,

and Bobby Woolf.

Thanks also to our reviewers who took the time and energy

to point out our errors, omissions, and occasionally-twisted

writing: Gareth Hayter, Dominique Plante, Charlie Poole,

Maik Schmidt, and David Starnes.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=xiii

PREFACE xiv

Matt’s Acknowledgments

I would like to first thank my amazing husband, Geoff, for

all his patience while writing the book and contributing to

various open source projects to fix issues discovered along

the way. Second, gratitude to all the people who have been

great pairs to program with and illuminated so much: Bryan

Siepert, Strick, Mike Muldoon, Edward Hieatt, Aaron Peck-

ham, Luis Miras, Rob Myers, Li Moore, Marcel Prasetya, An-

thony Lineberry, Mike Seery, Todd Nagengast, Richard Blay-

lock, Andre Fonseca, Keith Dreibelbis, Katya Androchina, and

Cullen Bryan. Last, I’d like to thank my mom for pair pro-

gramming with me as a boy, helping to typing in very long

BASIC programs from various magazines of the day.

Acknowledgments from the Second Edition

Thanks to all of you for your hard work and support. A special

thank you goes to Matt Hargett for his contributions to this

edition.

Thanks to our early reviewers, Cory Foy, Wes Reisz, and

Frédérick Ros.

And since this is a beta book, watch for more acknowledge-

ments in this space.

Andy Hunt

July, 2007

pragprog@pragmaticprogrammer.com

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=xiv

Chapter 1

Introduction

There are lots of different kinds of testing that can and should

be performed on a software project. Some of this testing re-

quires extensive involvement from the end users; other forms

may require teams of dedicated Quality Assurance personnel

or other expensive resources.

But that’s not what we’re going to talk about here.

Instead, we’re talking about unit testing: an essential, if often

misunderstood, part of project and personal success. Unit

testing is a relatively inexpensive, easy way to produce better

code, faster.

”Unit testing” is the practice of using small bits of code to

exercise the code you’ve written. In this book, we’ll be using

the NUnit testing framework to help manage and run these

little bits of code.

Many organizations have grand intentions when it comes to

testing, but tend to test only toward the end of a project, when

the mounting schedule pressures cause testing to be curtailed

or eliminated entirely.

Many programmers feel that testing is just a nuisance: an

unwanted bother that merely distracts from the real business

at hand—cutting code.

Everyone agrees that more testing is needed, in the same way

that everyone agrees you should eat your broccoli, stop smok-

CODING WITH CONFIDENCE 2

ing, get plenty of rest, and exercise regularly. That doesn’t

mean that any of us actually do these things, however.

But unit testing can be much more than these—while you

might consider it to be in the broccoli family, we’re here to tell

you that it’s more like an awesome sauce that makes every-

thing taste better. Unit testing isn’t designed to achieve some

corporate quality initiative; it’s not a tool for the end-users,

or managers, or team leads. Unit testing is done by program-

mers, for programmers. It’s here for our benefit alone, to make

our lives easier.

Put simply, unit testing alone can mean the difference be-

tween your success and your failure. Consider the following

short story.

1.1 Coding With Confidence

Once upon a time—maybe it was last Tuesday—there were

two developers, Pat and Dale. They were both up against

the same deadline, which was rapidly approaching. Pat was

pumping out code pretty fast; developing class after class and

method after method, stopping every so often to make sure

that the code would compile.

Pat kept up this pace right until the night before the deadline,

when it would be time to demonstrate all this code. Pat ran

the top-level program, but didn’t get any output at all. Noth-

ing. Time to step through using the debugger. Hmm. That

can’t be right, thought Pat. There’s no way that this variable

could be zero by now. So Pat stepped back through the code,

trying to track down the history of this elusive problem.

It was getting late now. That bug was found and fixed, but Pat

found several more during the process. And still, there was

no output at all. Pat couldn’t understand why. It just didn’t

make any sense.

Dale, meanwhile, wasn’t churning out code nearly as fast.

Dale would write a new routine and a short test to go along

with it. Nothing fancy, just a simple test to see if the routine

just written actually did what it was supposed to do. It took a

little longer to think of the test, and write it, but Dale refused

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=2

WHAT IS UNIT TESTING? 3

to move on until the new routine could prove itself. Only then

would Dale move up and write the next routine that called it,

and so on.

Dale rarely used the debugger, if ever, and was somewhat puz-

zled at the picture of Pat, head in hands, muttering various

evil-sounding curses at the computer with wide, bloodshot

eyes staring at all those debugger windows.

The deadline came and went, and Pat didn’t make it. Dale’s

code was integrated1 and ran almost perfectly. One little

glitch came up, but it was pretty easy to see where the prob-

lem was. Dale fixed it in just a few minutes.

Now comes the punch line: Dale and Pat are the same age,

and have roughly the same coding skills and mental prowess.

The only difference is that Dale believes very strongly in unit

testing, and tests every newly-crafted method before relying

on it or using it from other code.

Pat does not. Pat “knows” that the code should work as writ-

ten, and doesn’t bother to try it until most of the code has

been completed. But by then it’s too late, and it becomes very

hard to try to locate the source of bugs, or even determine

what’s working and what’s not.

1.2 What is Unit Testing?

A unit test is a piece of code written by a developer that ex-

ercises a very small, specific area of functionality in the code

being tested. Usually a unit test exercises some particular

method in a particular context. For example, you might add

a large value to a sorted list, then confirm that this value ap-

pears at the end of the list. Or you might delete a pattern of

characters from a string and then confirm that they are gone.

Unit tests are performed to prove that a piece of code does

what the developer thinks it should do.

The question remains open as to whether that’s the right thing

to do according to the customer or end-user: that’s what ac-

ceptance testing is for. We’re not really concerned with formal

1Because Dale had been integrating all along via the unit tests.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=3

WHY SHOULD I BOTHER WITH UNIT TESTING? 4

validation and verification or correctness just yet. We’re re-

ally not even interested in performance testing at this point.

All we want to do is prove that code does what we intended,2

and so we want to test very small, very isolated pieces of func-

tionality. By building up confidence that the individual pieces

work as expected, we can then proceed to assemble and test

working systems.

After all, if we aren’t sure the code is doing what we think,

then any other forms of testing may just be a waste of time.

You still need other forms of testing, and perhaps much more

formal testing depending on your environment. But testing,

as with charity, begins at home.

1.3 Why Should I Bother with Unit Testing?

Unit testing will make your life easier.3

Please say that with us, out loud. Unit testing will make your

life easier. That’s why we’re here.

It will make your designs better and drastically reduce the

amount of time you spend debugging. We like to write code,

and time wasted on debugging is time spent not writing code.

In our tale above, Pat got into trouble by assuming that lower-

level code worked, and then went on to use that in higher-level

code, which was in turn used by more code, and so on. With-

out legitimate confidence in any of the code, Pat was building

a “house of cards” of assumptions—one little nudge at the

bottom and the whole thing falls down.

When basic, low-level code isn’t reliable, the requisite fixes

don’t stay at the low level. You fix the low level problem, but

that impacts code at higher levels, which then need fixing,

and so on. Fixes begin to ripple throughout the code, getting

larger and more complicated as they go. The house of cards

falls down, taking the project with it.

2You also need to ensure that you’re intending the right thing, see [SH06].
3It could also make you wildest dreams come true, but only if you Vote

for Pedro.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=4

WHAT DO I WANT TO ACCOMPLISH? 5

Pat keeps saying things like “that’s impossible” or “I don’t un-

derstand how that could happen.” If you find yourself think-

ing these sorts of thoughts, then that’s usually a good indica-

tion that you don’t have enough confidence in your code—you

don’t know for sure what’s working and what’s not.

In order to gain the kind of code confidence that Dale has,

you’ll need to ask the code itself what it is doing, and check

that the result is what you expect it to be. Dale’s confidence

doesn’t come from the fact he knows the code forward and

backward at all times; it comes from the fact that he has a

safety net of tests that verify things work the way he thought

they should.

That simple idea describes the heart of unit testing: the single

most effective technique to better coding.

1.4 What Do I Want to Accomplish?

It’s easy to get carried away with unit testing because the con-

fidence it instills makes coding so much fun, but at the end

of the day we still need to produce production code for cus-

tomers and end-users, so let’s be clear about our goals for

unit testing. First and foremost, you want to do this to make

your life—and the lives of your teammates—easier.

And of course, executable documentation has the benefit of

being self-verifiably correct without much effort beyond writ-

ing it the first time. Unlike written documentation, it won’t

drift away from the code (unless, of course, you stop running

the tests or let them continuously fail).

Does It Do What I Want?

Fundamentally, you want to answer the question: “Is the code

fulfilling my intent?” The code might well be doing the wrong

thing as far as the requirements are concerned, but that’s a

separate exercise. You want the code to prove to you that it’s

doing exactly what you think it should.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=5

WHAT DO I WANT TO ACCOMPLISH? 6

Does It Do What I Want All of the Time?

Many developers who claim they do testing only ever write one

test. That’s the test that goes right down the middle, taking

the one, well-known, “happy path” through the code where

everything goes perfectly.

But of course, life is rarely that cooperative, and things don’t

always go perfectly: exceptions get thrown, disks get full,

network lines drop, buffers overflow, and—heaven forbid—we

write bugs. That’s the “engineering” part of software develop-

ment. Civil engineers must consider the load on bridges, the

effects of high winds, of earthquakes, floods, and so on. Elec-

trical engineers plan on frequency drift, voltage spikes, noise,

even problems with parts availability.

You don’t test a bridge by driving a single car over it right

down the middle lane on a clear, calm day. That’s not suffi-

cient, and the fact you succeeded is just a coincidence.4 Be-

yond ensuring that the code does what you want, you need

to ensure that the code does what you want all of the time,

even when the winds are high, the parameters are suspect,

the disk is full, and the network is sluggish.

Can I Depend On It?

Code that you can’t depend on is not particularly useful.

Worse, code that you think you can depend on (but turns out

to have bugs) can cost you a lot of time to track down and

debug. There are very few projects that can afford to waste

time, so you want to avoid that “one step forward two steps

back” approach at all costs, and stick to moving forward.

No one writes perfect code, and that’s okay—as long as you

know where the problems exist. Many of the most spectacu-

lar software failures that strand broken spacecraft on distant

planets or blow them up in mid-flight could have been avoided

simply by knowing the limitations of the software. For in-

stance, the Arianne 5 rocket software re-used a library from

an older rocket that simply couldn’t handle the larger num-

4See Programming by Coincidence in [HT00].

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=6

HOW DO I DO UNIT TESTING? 7

bers of the higher-flying new rocket.5 It exploded 40 seconds

into flight, taking $500 million dollars with it into oblivion.

We want to be able to depend on the code we write, and know

for certain both its strengths and its limitations.

For example, suppose you’ve written a routine to reverse a

list of numbers. As part of testing, you give it an empty list—

and the code blows up. The requirements don’t say you have

to accept an empty list, so maybe you simply document that

fact in the comment block for the method and throw an ex-

ception if the routine is called with an empty list. Now you

know the limitations of code right away, instead of finding out

the hard way (often somewhere inconvenient, such as in the

upper atmosphere).

Does It Document My Intent?

One nice side-effect of unit testing is that it helps you commu-

nicate the code’s intended use. In effect, a unit test behaves as

executable documentation, showing how you expect the code

to behave under the various conditions you’ve considered.

Current and future team members can look at the tests for

examples of how to use your code. If someone comes across

a test case that you haven’t considered, they’ll be alerted

quickly to that fact.

And of course, executable documentation has the benefit of

being correct. Unlike written documentation, it won’t drift

away from the code (unless, of course, you stop running the

tests and making sure they pass).

1.5 How Do I Do Unit Testing?

Unit testing is basically an easy practice to adopt, but there

are some guidelines and common steps that you can follow to

make it easier and more effective.

5For aviation geeks: The numeric overflow was due to a much larger “hor-

izontal bias” due to a different trajectory that increased the horizontal velocity

of the rocket.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=7

EXCUSES FOR NOT TESTING 8

The first step is to decide how to test the method in question—

before writing the code itself. With at least a rough idea of

how to proceed, you can then write the test code itself, either

before or concurrently with the implementation code. If you’re

writing unit tests for existing code, that’s fine too, but you may

find you need to refactor it more often than with new code in

order to make things testable.

Next, you run the test itself, and probably all the other tests

in that part of the system, or even the entire system’s tests if

that can be done relatively quickly. It’s important that all the

tests pass, not just the new one. This kind of basic regression

testing helps you avoid any collateral damage as well as any

immediate, local bugs.

Every test needs to determine whether it passed or not—it

doesn’t count if you or some other hapless human has to read

through a pile of output and decide whether the code worked

or not. If you can eyeball it, you can use a code assertion to

test it.

You want to get into the habit of looking at the test results

and telling at a glance whether it all worked. We’ll talk more

about that when we go over the specifics of using unit testing

frameworks.

1.6 Excuses For Not Testing

Despite our rational and impassioned pleas, some developers

will still nod their heads and agree with the need for unit test-

ing, but will steadfastly assure us that they couldn’t possibly

do this sort of testing for one of a variety of reasons. Here are

some of the most popular excuses we’ve heard, along with our

rebuttals.

It takes too much time to write the tests This is the num-

ber one complaint voiced by most newcomers to unit testing.

It’s untrue, of course, but to see why we need to take a closer

look at where you spend your time when developing code.

Many people view testing of any sort as something that hap-

pens toward the end of a project. And yes, if you wait to begin

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=8

EXCUSES FOR NOT TESTING 9

Joe Asks. . .

What’s collateral damage?

Collateral damage is what happens when a new fea-
ture or a bug fix in one part of the system causes a
bug (damage) to another, possibly unrelated part of
the system. It’s an insidious problem that, if allowed to
continue, can quickly render the entire system broken
beyond anyone’s ability to easily fix.

We sometime call this the “Whac-a-Mole” effect. In
the carnival game of Whac-a-Mole, the player must
strike the mechanical mole heads that pop up on the
playing field. But they don’t keep their heads up for
long; as soon as you move to strike one mole, it re-
treats and another mole pops up on the opposite side
of the field. The moles pop up and down fast enough
that it can be very frustrating to try to connect with
one and score. As a result, players generally flail help-
lessly at the field as the moles continue to pop up
where you least expect them.

Widespread collateral damage to a code base can
have a similar effect. The root of the problem is usu-
ally some kind of inappropriate coupling, coming in
forms such as global state via static variables or false
singletons, circular object or class dependencies, etc.
Eliminate them early on to avoid implicit dependen-
cies on this abhorrent practice in other parts of the
code.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=9

EXCUSES FOR NOT TESTING 10

unit testing until then it will definitely longer than it would

otherwise. In fact, you may not finish the job until the heat

death of the universe itself.

At least it will feel that way: it’s like trying to clear a cou-

ple of acres of land with a lawn mower. If you start early on

when there’s just a field of grasses, the job is easy. If you wait

until later, when the field contains thick, gnarled trees and

dense, tangled undergrowth, then the job becomes impossi-

bly difficult by hand—you need bulldozers and lots of heavy

equipment.

Instead of waiting until the end, it’s far cheaper in the long

run to adopt the “pay-as-you-go” model. By writing individual

tests with the code itself as you go along, there’s no crunch

at the end, and you experience fewer overall bugs as you are

generally always working with tested code. By taking a little

extra time all the time, you minimize the risk of needing a

huge amount of time at the end.

You see, the trade-off is not “test now” versus “test later.” It’s

linear work now versus exponential work and complexity try-

ing to fix and rework at the end: not only is the job larger

and more complex, but now you have to re-learn the code you

wrote some weeks or months ago. All that extra work kills

your productivity, as shown in Figure 1.1 on the following

page. These productivity losses can easily doom a project or

developer to being perpetually 90% done.

Notice that testing isn’t free. In the pay-as-you-go model,

the effort is not zero; it will cost you some amount of effort

(and time and money). But look at the frightening direction

the right-hand curve takes over time—straight down. Your

productivity might even become negative. These productivity

losses can easily doom a project.

So if you think you don’t have time to write tests in addition to

the code you’re already writing, consider the following ques-

tions:

1. How much time do you spend debugging code that you

or others have written?

2. How much time do you spend reworking code that you

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=10

EXCUSES FOR NOT TESTING 11

P
ro

d
u

c
ti

v
it

y
Õ

P
ro

d
u

c
ti

v
it

y
Õ

Time Õ Time Õ

PAY-AS-YOU-GO SINGLE TEST PHASE

Figure 1.1: Comparison of Paying-as-you-go vs. Having a Sin-

gle Testing Phase

thought was working, but turned out to have major, crip-

pling bugs?

3. How much time do you spend isolating a reported bug to

its source?

For most people who work without unit tests, these numbers

add up fast, and will continue to add up even faster over the

life of the project. Proper unit testing can dramatically re-

duces these times, which frees up enough time so that you’ll

have the opportunity to write all of the unit tests you want—

and maybe even some free time to spare.

It takes too long to run the tests It shouldn’t. Most unit

tests should execute in the blink of an eye, so you should be

able to run hundreds, even thousands of them in a matter

of a few seconds. But sometimes that won’t be possible, and

you may end up with certain tests that simply take too long

to conveniently run all of the time.

In that case, you’ll want to separate out the longer-running

tests from the short ones. NUnit has functionality that han-

dles this nicely, which we’ll talk about more later. Only run

the long tests in the automated build, or manually at the be-

ginning of the day while catching up on email, and run the

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=11

EXCUSES FOR NOT TESTING 12

shorter tests constantly at every significant change or before

every commit to your source repository.

My legacy code is impossible to test Many people offer

the excuse that they can’t possibly do unit testing because

the existing, legacy code base is such a tangled mess that it’s

impossible to get into the middle of it and create an individual

test. To test even a small part of the system might mean you

have to drag the entire system along for the ride, and making

any changes is a fragile, risky business.6

The problem isn’t with unit testing, of course, the problem is

with the poorly written legacy code. You’ll have to refactor—

incrementally re-design and adapt—the legacy code to untan-

gle the mess. Note that this doesn’t really qualify as making

changes just for the sake of testing. The real power of unit

tests is the design feedback that, when acted upon appropri-

ately, will lead to better object-oriented designs.

Coding in a culture of fear because you are paralyzed by

legacy code is not productive; it’s bad for the project, bad for

the programmers, and ultimately bad for business. Introduc-

ing unit testing helps break that paralysis.

It’s not my job to test my code Now here’s an interesting

excuse. Pray tell, what is your job, exactly? Presumably your

job, at least in part, is to create working, maintainable code.

If you are throwing code over the wall to some testing group

without any assurance that it’s working, then you’re not do-

ing your job. It’s not polite to expect others to clean up our

own messes, and in extreme cases submitting large volumes

of buggy code can become a “career limiting” move.

On the other hand, if the testers or QA group find it very

difficult to find fault with your code, your reputation will grow

rapidly—along with your job security!

I don’t really know how the code is supposed to behave so

I can’t test it If you truly don’t know how the code is sup-

6See [Fea04] for details on working effectively with legacy code.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=12

EXCUSES FOR NOT TESTING 13

posed to behave, then maybe this isn’t the time to be writing

it.7 Maybe a prototype would be more appropriate as a first

step to help clarify the requirements.

If you don’t know what the code is supposed to do, then how

will you know that it does it?

But it compiles! Okay, no one really comes out with this as

an excuse, at least not out loud. But it’s easy to get lulled

into thinking that a successful compile is somehow a mark of

approval, that you’ve passed some threshold of goodness.

But the compiler’s blessing is a pretty shallow compliment. It

can verify that your syntax is correct, but it can’t figure out

what your code should do. For example, the C# compiler can

easily determine that this line is wrong:

statuc void Main() {

It’s just a simple typo, and should be static, not statuc.

That’s the easy part. But now suppose you’ve written the

following:

public void Addit(Object anObject) {

List myList = new List();

myList.Add(anObject);

myList.Add(anObject);

// more code...

} M
a

in
.c

s
Did you really mean to add the same object to the same list

twice? Maybe, maybe not. The compiler can’t tell the differ-

ence, only you know what you’ve intended the code to do.8

I’m being paid to write code, not to write tests By that

same logic, you’re not being paid to spend all day in the de-

bugger, either. Presumably you are being paid to write work-

ing code, and unit tests are merely a tool toward that end, in

the same fashion as an editor, an IDE, or the compiler.

7See [HT00] or [SH06] for more on learning requirements.
8Automated testing tools that generate their own tests based on your ex-

isting code fall into this same trap—they can only use what you wrote, not

what you meant.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=13

EXCUSES FOR NOT TESTING 14

I feel guilty about putting testers and QA staff out of work

Not to worry, you won’t. Remember we’re only talking about

unit testing, here. It’s the barest-bones, lowest-level testing

that’s designed for us, the programmers. There’s plenty of

other work to be done in the way of functional testing, accep-

tance testing, performance and environmental testing, valida-

tion and verification, formal analysis, and so on.

My company won’t let me run unit tests on the live sys-

tem Whoa! We’re talking about developer unit-testing here.

While you might be able to run those same tests in other con-

texts (on the live, production system, for instance) they are no

longer unit tests. Run your unit tests on your machine, using

your own database, or using a mock object (see Chapter 6).

If the QA department or other testing staff want to run these

tests in a production or staging environment, you might be

able to coordinate the technical details with them so they can,

but realize that they are no longer unit tests in that context.

Yeah, we unit test already Unit testing is one of the prac-

tices that is typically marked by effusive and consistent en-

thusiasm. If the team isn’t enthusiastic, maybe they aren’t

doing it right. See if you recognize any of the warning signs

below.

• Unit tests are in fact integration tests, requiring lots of

setup and test code, taking a long time to run, and ac-

cessing resources such as databases and services on the

network.

• Unit tests are scarce and test only one path, don’t test

for exceptional conditions (no disk space, etc.), or don’t

really express what the code is supposed to do.

• Unit tests are not maintained: tests are ignored (or

deleted) forever if they start failing, or no new unit tests

are added, even when bugs are encountered that illus-

trate holes in the coverage of the unit tests.

If you find any of these symptoms, then your team is not unit

testing effectively or optimally. Have everyone read up on unit

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=14

ROADMAP 15

testing again, go to some training, or try pair programming to

get a fresh perspective.

1.7 Roadmap

Chapter 2, Your First Unit Tests, contains an overview of test

writing. From there we’ll take a look at the specifics of Writing

Tests in NUnit in Chapter 3. We’ll then spend a few chapters

on how you come up with what things need testing, and how

to test them.

Next we’ll look at the important properties of good tests in

Chapter 7, followed by what you need to do to use testing

effectively in your project in Chapter 8. This chapter also

discusses how to handle existing projects with legacy code.

We’ll then talk about how testing can influence your applica-

tion’s design (for the better) in Chapter 9, Design Issues. We

then wrap up with an overview of GUI testing in 10.

The appendices contain additional useful information: a look

at common unit testing problems, extending NUnit itself, a

note on installing NUnit, and a list of resources including the

bibliography. We finish off with a summary card containing

highlights of the book’s tips and suggestions.

So sit back, relax, and welcome to the world of better coding.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=15

Chapter 2

Your First Unit Tests

As we said in the introduction, a unit test is just a piece of

code. It’s a piece of code you write that happens to exercise

another piece of code, and determines whether the other piece

of code is behaving as expected or not.

How do you do that, exactly?

To check if code is behaving as you expect, you use an as-

sertion, a simple method call that verifies that something is

true. For instance, the method IsTrue checks that the given

boolean condition is true, and fails the current test if it is not.

It might be implemented like the following.

public void IsTrue(bool condition)

{

if (!condition)

{

throw new ArgumentException("Assertion failed");

}
} A

ss
e

rt
Tr

u
e

.c
s

You could use this assert to check all sorts of things, including

whether numbers are equal to each other:

int a = 2;
xx xxx xx x xxx x;
x x x xx xxx xxxx x;

IsTrue(a == 2);
xxxx xx xx xxx xx;

If for some reason a does not equal 2 when the method IsTrue

is called, then the program will throw an exception.

PLANNING TESTS 17

Since we check for equality a lot, it might be easier to have an

assert just for numbers. To check that two integers are equal,

for instance, we could write a method that takes two integer

parameters:

public void AreEqual(int a, int b)

{
IsTrue(a == b);

} A
ss

e
rt

Tr
u

e
.c

s

Armed with just these two asserts, we can start writing some

tests. We’ll look at more asserts and describe the details of

how you use asserts in unit test code in the next chapter. But

first, let’s consider what tests might be needed before we write

any code at all.

2.1 Planning Tests

We’ll start with a simple example, a single, static method de-

signed to find the largest number in a list of numbers:

static int Largest(int[] list);

In other words, given an array of numbers such as [7, 8,

9], this method should return 9. That’s a reasonable first

test. What other tests can you think of, off the top of your

head? Take a minute and write down as many tests as you

can think of for this simple method before you continue read-

ing.

STOPThink about this for a moment before reading on. . .

How many tests did you come up with?

It shouldn’t matter what order the given list is in, so right off

the bat you’ve got the following test ideas (which we’ve written

as “what you pass in” Õ “what you expect”).

• [7, 8, 9] Õ 9

• [8, 9, 7] Õ 9

• [9, 7, 8] Õ 9

What happens if there are duplicate largest numbers?

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=17

TESTING A SIMPLE METHOD 18

• [7, 9, 8, 9] Õ 9

Since these are int types, not objects, you probably don’t care

which 9 is returned, as long as one of them is.

What if there’s only one number?

• [1] Õ 1

And what happens with negative numbers:

• [-9, -8, -7] Õ -7

It might look odd, but indeed -7 is larger than -9. Glad we

straightened that out now, rather than in the debugger or in

production code where it might not be so obvious.

This isn’t a comprehensive list by any means, but it’s good

enough to get started with. To help make all this discussion

more concrete, we’ll write a “largest” method and test it using

these unit tests we just described. Here’s the code for our first

implementation:

Line 1 using System;
-

- public class Cmp
- {
5 public static int Largest(int[] list)
- {
- int index, max=Int32.MaxValue;
- for (index = 0; index < list.Length-1; index++)
- {

10 if (list[index] > max)
- {
- max = list[index];
- }
- }

15 return max;
- }
-

- } La
rg

e
st

.c
s

Now that we’ve got some ideas for tests, we’ll look at writing

these tests in C#, using the NUnit framework.

2.2 Testing a Simple Method

Normally you want to make the first test you write incredi-

bly simple, because there is much to be tested the first time

besides the code itself: all of that messy business of class

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=18

TESTING A SIMPLE METHOD 19

names, assembly references, and making sure it compiles.

You want to get all of that taken care of and out of the way with

the very first, simplest test; you won’t have to worry about it

anymore after that, and you won’t have to debug complex in-

tegration issues at the same time you’re debugging a complex

test!

First, let’s just test the simple case of passing in a small array

with a couple of unique numbers. Here’s the complete source

code for the test class. We’ll explain all about test classes

in the next chapter; for now, just concentrate on the assert

statements:

using System;

using NUnit.Framework;

using NUnit.Framework.SyntaxHelpers;

[TestFixture]

public class LargestTest

{

[Test]

public void LargestOf3()

{

Assert.That(Cmp.Largest(new int[] {8,9,7}), Is.EqualTo(9));

}

} La
rg

e
st

Te
st

.c
s

C# note: the odd-looking syntax to create an anonymous ar-

ray is just for your authors’ benefit, as we are lazy and do not

like to type. If you prefer, the test could be written this way

instead (although the previous syntax is idiomatic):

[Test]

public void LargestOf3Alt()

{

int[] arr = new int[3];

arr[0] = 8;

arr[1] = 9;

arr[2] = 7;

Assert.That(Cmp.Largest(arr), Is.EqualTo(9));

} La
rg

e
st

Te
st

.c
s

That’s all it takes, and you have your first test.

We want to run this simple test and make sure it passes; to

do that, we need to take a quick look at running tests using

NUnit.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=19

RUNNING TESTS WITH NUNIT 20

2.3 Running Tests with NUnit

NUnit is a freely available,1 open source product that pro-

vides a testing framework and test runners. It’s available as

C# source code that you can compile and install yourself, and

as a ZIP file of the binaries. The binaries in the ZIP will run

on Microsoft .NET on Windows, and possibly other .NET im-

plementations on Linux/UNIX or MacOS X. There is also an

MSI package available, but we recommend just using the ZIP

file for the least amount of hassle.

Linux and MacOS users may want to look at Mono, an open-

source implementation of the ECMA standards upon which

C# and .NET are based. While mono ships with its own ver-

sion of NUnit, we recommend referencing your own copy of

NUnit, downloaded separately. This will insulate you from

changes to the version of NUnit distributed by the mono team.

We discuss more of these project-oriented details in Chapter

8.

Next, you need to compile the code we’ve shown. If you’re

using Visual Studio or SharpDevelop, create a new project for

this sample code of type Class Library. Type our “production”

code into a file named Largest.cs, and our new test code into

a file named LargestTest.cs. If you’d rather not type these

programs in from scratch, you’ll be pleased to know that all of

the source code for this book is available from our website.2)

Notice that the test code uses NUnit.Framework; you’ll need

to add a reference to nunit.framework.dll in order to com-

pile this code. In Visual Studio or SharpDevelop, expand the

project’s node in the Solution Explorer, bring up the con-

text menu on the References folder, then select “Add Refer-

ence. . . ”. Once there, browse to the nunit.framework.dll

from the NUnit install directory. Press the SELECT button to

add the dll to the component list as shown in Figure 2.1. Press

OK, and now your project will be able to use the functionality

of the NUnit framework.

Go ahead and build the project as you normally would (In

1http://www.nunit.org
2http://www.pragmaticprogrammer.com/titles/utc2

http://www.nunit.org
http://www.pragmaticprogrammer.com/titles/utc2
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=20

RUNNING TESTS WITH NUNIT 21

Joe Asks. . .

What’s the deal with Open Source?

What is open source, exactly? Open source refers to
software where the source code is made freely avail-
able. Typically this means that you can obtain the
product for free, and that you are also free to modify
it, add to it, give it to your friends, and so on.

Is it safe to use? For the most part, open source prod-
ucts are safer to use than their commercial, closed-
source counterparts, because they are open to ex-
amination by thousands of other interested develop-
ers. Malicious programs, spyware, viruses, and other
similar problems are rare to non-existent in the open
source community.

Is it legal? Absolutely. Just as you are free to write a
song or a book and give it away (or sell it), you are
free to write code and give it away (or sell it). There
are a variety of open source licenses that clarify the
freedoms involved. Before you distribute any software
that includes open source components, you should
carefully check the particular license agreements in-
volved.

Can I contribute? We certainly hope so! The strength
of open source comes from people all over the world:
People just like you, who know how to program and
have a need for some particular feature. Would you
like to add a feature to NUnit? You can! You can
edit the source code to the library or one of the test
runners and change it, and use those changes your-
self. You can e-mail your changes to the maintainers
of the product, and they may even incorporate your
changes into the next release. You can also submit
changes using patch tracker on sourceforge.net;
that way, even if your change is not included in an
official release, other users can take advantage of it.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=21

RUNNING TESTS WITH NUNIT 22

Figure 2.1: Adding NUnit Assembly Reference

Visual Studio, CTRL-SHIFT-B works well). Using Mono, you’d

invoke the compiler using something such as:

gmcs -debug -t:library -r:System -r:lib/nunit.framework.dll \

-out:Largest.dll Largest.cs LargestTest.cs

(The reference to nunit.framework.dll will of course be the

location where you copied the NUnit distribution.)

Now you’ve got an assembly. But it’s just a library. How can

we run it?

Test Runners to the rescue! A test runner knows to look for

the [TestFixture] attribute of a class, and for the [Test]

methods within it. The runner will run the tests, accumulate

some statistics on which tests passed and failed, and report

the results back to you. In this book, we focus on test runners

that are easily accessible and freely available.

There are four main ways to use a test runner:

1. NUnit GUI (all platforms)

2. NUnit command line (all platforms)

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=22

RUNNING TESTS WITH NUNIT 23

Figure 2.2: NUnit Loaded and Ready

3. TestDriven.NET (Windows-only)

4. SharpDevelop 2.1 runner (Windows-only)

5. MonoDevelop 0.13 runner (all platforms)

NUnit GUI

The NUnit GUI can be started a number of ways: if you un-

zipped the binaries on Windows, you can just point Windows

Explorer at the directory and double-click on nunit.exe. If

you unzipped the binaries on MacOS or Linux, you can run

NUnit GUI via the mono runtime executable (using mono -

debug nunit.exe). If you used the Windows installer, you

can use the shortcuts on your Windows desktop and in the

Programs menu of the Start Menu to start the NUnit GUI.

When the GUI comes up, you’ve got a couple of choices. You

can create a new NUnit project as shown in Figure ?? on

page ??; navigate to your source directory and create the

NUnit project file. Then under the “Project” menu, add as-

semblies or Visual Studio projects to your NUnit project.3

3Visual Studio support can be enabled using a preference located under

Tools/Options.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=23

RUNNING TESTS WITH NUNIT 24

Alternatively, you can just Open an assembly (a .dll or .exe

file) directly. In Figure 2.2 on the preceding page, we’ve loaded

our tests directly from the dll. It’s ready to be tested by press-

ing the “Run” button.

When you run a selected test, the GUI will display a large,

colored, status bar. If all the tests pass, the bar is a happy

shade of bright green. If any test fails, the bar becomes an

angry red. If the bar is a cautionary yellow, that means some

tests were skipped (more on that later).

NUnit Command Line

NUnit can also be run from the command line, which comes in

very handy when automating the project build and test. You’ll

need to add the NUnit bin directory to your path (that is, the

directory path to wherever you installed the NUnit application,

plus “\bin”).

For the current shell, you can set your path variable at the

command line, as in the following example on Windows.

C:\> set "PATH=%PATH%;C:\Program Files\Nunit V2.4\bin"

For more permanent use, go to Control Panel/System/Advan-

ced/Environment Variable and add NUnit’s bin directory to

the Path variable (see Figure 2.3 on the next page).

To run from the command line, type the command nunit-

console followed by an NUnit project file or an assembly lo-

cation. You’ll see output something like that shown in Fig-

ure 2.4 on page 26.

TestDriven.NET (Visual Studio add-in)

There are several add-ins that integrate NUnit with Visual

Studio. The TestDriven.NET4 add-in adds the ability to run

or debug any test just by right-clicking on the source code and

selecting “Run Test(s)”; the output from the tests are reported

in Visual Studio’s output pane, just like compiler warnings or

4Such as http://www.testdriven.net/

http://www.testdriven.net/
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=24

RUNNING TESTS WITH NUNIT 25

Figure 2.3: Adding to the Windows System Path

errors. You can use this output to quickly browse to failed as-

sertion locations, which is quite handy. Other similar projects

add visual reporting of tests and other features.

SharpDevelop

SharpDevelop 2.1 (and above), an open-source IDE writ-

ten in C#, includes an Eclipse-style integrated test runner.

Failed tests come up like compiler errors, allowing for double-

clicking on an item and going to the assertion that failed. It

also allows for measuring the code coverage of unit tests (us-

ing NCover5) with source code highlighting that can be en-

5http://NCover.org

http://NCover.org
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=25

RUNNING TESTS WITH NUNIT 26

Figure 2.4: NUnit Command Line Usage

Figure 2.5: SharpDevelop’s Integrated Unit Testing

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=26

RUNNING THE EXAMPLE 27

abled and disabled. A sample screenshot is shown in Fig-

ure 2.5 on the previous page. See SharpDevelop’s web page

for more details (http://sharpdevelop.net).

MonoDevelop

MonoDevelop 0.13 and above, which is based on SharpDe-

velop 0.9, also includes an integrated test runner. While not

as advanced as SharpDevelop itself, it’s a welcome improve-

ment over a flat text editor on platforms where other tools

don’t run. For more information, see MonoDevelop’s web page

(http://monodevelop.com).

2.4 Running the Example

You should be ready to run this first test now.

STOPTry running this example before reading on. . .

Having just run that code, you probably saw an error similar

to the following:

Failures:
1) LargestTest.LargestOf3 :

expected:<9>

but was:<2147483647>
at LargestTest.LargestOf3() in c:\largesttests.cs:line 13

Whoops! That didn’t go as expected. Why did it return such

a huge number instead of our 9? Where could that very large

number have come from? It almost looks like the largest num-

ber. . . oh, it’s a small typo: max=Int32.MaxValue on line 7

should have been max=0. We want to initialize max so that

any other number instantly becomes the next max. Let’s fix

the code, recompile, and run the test again to make sure that

it works.

Next we’ll look at what happens when the largest number ap-

pears in different places in the list—first or last, and some-

where in the middle. Bugs most often show up at the “edges.”

In this case, edges occur when the largest number is at the

start or end of the array that we pass in. We can lump all

http://sharpdevelop.net
http://monodevelop.com
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=27

RUNNING THE EXAMPLE 28

three of these asserts together in one test, but let’s add the

assert statements one at a time. Notice that just as in pro-

duction (non-test) code, you have to exercise care, taste, and

restraint when deciding how much code to add to one method,

and when to break that up into multiple methods. Since this

method is testing variations on a single theme (physical place-

ment of the largest value), let’s put them together in a single

method.

We already have the case with the largest in the middle:

using System;

using NUnit.Framework;

using NUnit.Framework.SyntaxHelpers;

[TestFixture]

public class LargestTest

{

[Test]

public void LargestOf3()

{

Assert.That(Cmp.Largest(new int[] {8,9,7}), Is.EqualTo(9));

}
} La

rg
e

st
Te

st
.c

s

Now try it with the 9 as the first value (we’ll just add an addi-

tional assertion to the existing LargestOf3() method):

[Test]

public void LargestOf3()

{

Assert.That(Cmp.Largest(new int[] {9,8,7}), Is.EqualTo(9));

Assert.That(Cmp.Largest(new int[] {8,9,7}), Is.EqualTo(9));

} La
rg

e
st

Te
st

.c
s

We’re on a roll. One more, just for the sake of completeness,

and we can move on to more interesting tests:

[Test]

public void LargestOf3()

{

Assert.That(Cmp.Largest(new int[] {9,8,7}), Is.EqualTo(9));

Assert.That(Cmp.Largest(new int[] {8,9,7}), Is.EqualTo(9));

Assert.That(Cmp.Largest(new int[] {7,8,9}), Is.EqualTo(9));

} La
rg

e
st

Te
st

.c
s

STOPTry running this example before reading on. . .

Failures:
1) LargestTest.LargestOf3 :

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=28

RUNNING THE EXAMPLE 29

expected:<9>

but was:<8>
at LargestTest.LargestOf3() in c:\LargestTest.cs:line 14

Why did the test get an 8 as the largest number? It’s almost

as if the code ignored the last entry in the list. Sure enough,

another simple typo: the for loop is terminating too early.

This is an example of the infamous “off-by-one” error. Our

code has:

for (index = 0; index < list.Length-1; index++) {

But it should be one of:

for (index = 0; index <= list.Length-1; index++) {

for (index = 0; index < list.Length; index++) {

The second expression is idiomatic in languages descended

from C (including Java and C#), but as you can see, it’s

prone to off-by-one errors. Make the changes and run the

tests again, but consider that this sort of bug is telling you

something: it would be better to use an iterator (using the C#

foreach statement) here instead. That way you could avoid

this kind of off-by-one error in the future.

Let’s check for duplicate largest values; type this in and run

it (we’ll only show the newly added methods from here on):

[Test]

public void Dups() {

Assert.That(Cmp.Largest(new int[] {9,7,9,8}), Is.EqualTo(9));

} La
rg

e
st

Te
st

.c
s

So far, so good. Now the test for just a single integer:

[Test]

public void One() {

Assert.That(Cmp.Largest(new int[] {1}), Is.EqualTo(1));

} La
rg

e
st

Te
st

.c
s

Hey, it worked! You’re on a roll now, surely all the bugs we

planted in this example have been exorcised by now. Just one

more check with negative values:

[Test]

public void Negative() {

int[] negatives = new int[] {-9, -8, -7};

Assert.That(Cmp.Largest(negatives), Is.EqualTo(-7));

} La
rg

e
st

Te
st

.c
s

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=29

RUNNING THE EXAMPLE 30

STOPTry running this example before reading on. . .

Failures:
1) LargestTest.Negative :

expected:<-7>

but was:<0>
at LargestTest.Negative() in c:\LargestTest.cs:line 4

Whoops! Where did zero come from?

Looks like choosing 0 to initialize max was a bad idea; what we

really wanted was MinValue, so as to be less than all negative

numbers as well:

max = Int32.MinValue

Make that change and try it again—all of the existing tests

should continue to pass, and now this one will as well.

Unfortunately, the initial specification for the method “largest”

is incomplete, as it doesn’t say what should happen if the

array is empty. Let’s say that it’s an error, and add some code

at the top of the method that will throw a runtime-exception

if the list length is zero:

public static int Largest(int[] list) {

int index, max=Int32.MinValue;

if (list.Length == 0) {

throw new ArgumentException("largest: Empty list");

}

// ... La
rg

e
st

.c
s

Notice that just by thinking of the tests, we’ve already realized

we need a design change. That’s not at all unusual, and in

fact is something we want to capitalize on. So for the last test,

we need to check that an exception is thrown when passing in

an empty array. We’ll talk about testing exceptions in depth

on page 54, but for now just trust us:

[Test]

[ExpectedException(typeof(ArgumentException))]

public void Empty()

{

Cmp.Largest(new int[] {});

} La
rg

e
st

Te
st

.c
s

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=30

MORE TESTS 31

Finally, a reminder: all code—test or production—should be

clear and simple. Test code especially must be easy to under-

stand, even at the expense of performance or verbosity.

2.5 More Tests

We started with a very simple method and came up with a

couple of interesting tests that actually found some bugs.

Note that we didn’t go overboard and blindly try every pos-

sible number combination; we picked the interesting cases

that might expose problems. But are these all the tests you

can think of for this method?

What other tests might be appropriate?

Since we’ll need to think up tests all of the time, maybe we

need a way to think about code that will help us to come up

with good tests regularly and reliably. We’ll talk about that

after the next chapter, but first, let’s take a more in-depth

look at using NUnit.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=31

Chapter 3

Writing Tests in NUnit

We’ve looked at writing tests somewhat informally in the last

chapter, but now it’s time to take a deeper look at the differ-

ence between test code and production code, all the various

forms of NUnit’s assertions, the structure and composition of

NUnit tests, and so on.

3.1 Structuring Unit Tests

Suppose we have a method named CreateAccount; the

method encapsulates behaviour, and it’s behaviour that we

want to test. Your first test method might be named some-

thing like CreateSimpleAccount. The method Create-

SimpleAccount will call CreateAccount with the necessary

parameters and verify that CreateAccount works as adver-

tised. You can, of course, have many test methods that ex-

ercise CreateAccount (not all accounts are simple, after all).

Tests should be organized around behaviours, not necessarily

individual methods.

The relationship between these two pieces of code is shown in

Figure 3.1 on the next page.

The test code is for our internal use only; customers or end-

users will generally never see it or use it. The production

code—that is, the code that will eventually be shipped to a

customer and put into production—must not know anything

about the test code. Production code will be thrust out into

STRUCTURING UNIT TESTS 33

CreateSimpleAccount()

CreateDefaultAccount()

CreateDupAccount()

AccountTest.cs

(Internal Only)

CreateAccount()

Account.cs

(Delivered)

Figure 3.1: Test Code and Production Code

the cold world all alone, without the test code. This typically

means that test code is placed under a different project, in its

own assembly.

Test code follows a standard formula:

• Set up all conditions needed for testing (create any re-

quired objects, allocate any needed resources, etc.)

• Call the method to be tested

• Verify that the tested functionality worked as expected

• Clean up after itself1

You write test code and compile it in the normal fashion, as

you would any other bit of source code in your project. It

might happen to use some additional libraries, but otherwise

there’s no magic—it’s just code.

When it’s time to execute the code, remember that you never

actually run the production code directly; at least, not the way

a user would. Instead, you run the test code, which in turn

exercises the production code under very carefully controlled

conditions.

Now, although we could write all our tests from the ground

up, that’s not terribly efficient. For the rest of this book we’ll

assume that you’re using the NUnit framework. More specif-

ically, we’ll be showing the specific method calls and classes

for NUnit 2.4, using C#, in our examples. Earlier or later ver-

1This doesn’t mean nulling out fields or using GC.Collect(). If you find

yourself doing either, you may have a race condition due to a misbehaving

Finalizer. These issues are almost never limited to test code.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=33

CLASSIC ASSERTS 34

sions may have slight differences from the details presented

here, but the general concepts are the same across all ver-

sions, and indeed for any testing framework in any language

or environment.

3.2 Classic Asserts

As we’ve seen, there are some helper methods that assist us

in determining whether a method under test is performing

correctly or not. Generically, we call all these helper meth-

ods assertions. They let us assert that some condition is true;

that two bits of data are equal, or not, and so on. NUnit 2.4

introduced a new constraint-style of assertions while still sup-

porting the classic-style of assertions that more closely match

other XUnit frameworks. We’ll start off by covering some basic

classic-style assertions before diving into the constraint-style

assertions.

All of the following methods will report failures (that’s when

the assertion is false) or errors (that’s when we get an un-

expected exception), and report these through the NUnit test

runner. For the text version of the test runner, that means the

details of the failure will be printed to the console. The GUI

versions of the test runner will show a red bar and support-

ing details to indicate a failure. You can also output the test

results to an XML file.

When a failure or error occurs, execution of the current test

method is aborted. Other tests within the same test fixture

will still be run.

Asserts are the fundamental building block for unit tests; the

NUnit library provides a number of different forms of assert

as static methods in the Assert class.

AreEqual

Assert.AreEqual(expected, actual [, string message])

This is the most-often used form of assert. expected is a value

you hope to see (typically hard-coded), and actual is a value

actually produced by the code under test. message is an op-

tional message that will be reported in the event of a failure.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=34

CLASSIC ASSERTS 35

You can omit the message argument and simply provide the

expected and actual values. We recommend omitting the mes-

sage string for reporting unless you really need to; better that

the name of the test method itself expresses your intent, you

use the appropriate Assert method, or you split the test into

two methods to keep it focused. We’ll show examples of all of

these practices in a bit.

Any kind of object may be tested for equality; the appropri-

ate equals method will be used for the comparison.2 In par-

ticular, you can compare the contents of strings using this

method. Different method signatures are also provided for all

the native types (int, decimal, etc.) and Object. Strings and

Collections also have their own classic-style asserter classes

with extra methods, StringAssert and CollectionAssert,

which we’ll get into a bit later.

Computers cannot represent all floating-point numbers ex-

actly, and will usually be off a little bit. Because of this, if you

are using an assert to compare floating point numbers (floats

or doubles in C#), you need to specify one additional piece of

information, the tolerance. This specifies just how close to

“equals” you need the result to be.

Assert.AreEqual(expected,

actual,

tolerance [, string message])

For business applications, 4 or 5 decimal places is probably

enough. For scientific apps, you may need greater precision.

As an example, the following assert will check that the actual

result is equal to 3.33, but only look at the first two decimal

places:

Assert.AreEqual(3.33, 10.0/3.0, 0.01);

Less / Greater

Assert.Less(x, y)

Assert.Greater(x,y)

2Remember that the default Equals() inherited from System.Object

only checks to see if the object references themselves are the same—it checks

for identity, rather than equality. For value types (structs, enums, etc.) the

fields are verified to be equal [Ric06].

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=35

CLASSIC ASSERTS 36

Asserts that x < y (or x > y) for numeric types, or any type

that is IComparable.

GreaterOrEqual / LessOrEqual

Assert.GreaterOrEqual(x, y)

Assert.LessOrEqual(x,y)

Asserts that x >= y (or x <= y) for numeric types, or any type

that is IComparable.

IsNull / IsNotNull

Assert.IsNull(object [, string message])

Assert.IsNotNull(object [, string message])

Asserts that the given object is null (or not null), failing oth-

erwise. The message is optional.

AreSame

Assert.AreSame(expected, actual [, string message])

Asserts that expected and actual refer to the same object, and

fails the test if they do not. The message is optional.

IsTrue

Assert.IsTrue(bool condition [, string message])

Asserts that the given boolean condition is true, otherwise the

test fails. The message is optional.

If you find test code that is littered with the following:

Assert.IsTrue(true);

then you should be concerned. Unless that construct is

used to verify some sort of branching or exception logic, it’s

probably a bad idea. In particular, what you really don’t

want to see is a whole page of “test” code with a single As-

sert.IsTrue(true) at the very end (i.e., “the code made it

to the very end without blowing up therefore it must work”).

That’s not testing, that’s wishful thinking.

In addition to testing for true, you can also test for false:

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=36

CONSTRAINT -BASED ASSERTS 37

Assert.IsFalse(bool condition [, string message])

Asserts that the given boolean condition is false, otherwise the

test fails. The message is optional.

Neither IsTrue nor IsFalse give you any additional in-

formation when the test fails; this means you might

have to use the debugger or Console.WriteLine() state-

ments to diagnose a unit test failure. That’s not

very efficient. There might be a better assertion you

could use, such as StringAssert.Contains() or Collec-

tionAssert.DoesNotContain()—we’ll take a look at these

more interesting assertions in just a moment. A more precise

assertion like those will give you more precise information on

failure so you can concentrate on fixing the code rather than

trying to figure out what went wrong.

Fail

Assert.Fail([string message])

Fails the test immediately, with the optional message. This

might be used to mark sections of code that should not be

reached, but isn’t really used much in practice.

3.3 Constraint-based Asserts

NUnit 2.4 introduced a new style of assertions that are a little

less procedural and allow for a more object-oriented underly-

ing implementation. NUnit has a history of innovating on the

classic XUnit design, which other frameworks then incorpo-

rate later. In this case the NUnit team decided to mimic an-

other innovative framework called NMock2,3 which we’ll dis-

cuss later in Chapter 6.

This new assertion style can seem a little odd at first, but we

suggest giving it a chance before falling back on the “classic”

assertion methods. After all, the classic assertion methods

just delegate to the constraint-style assertion methods behind

the covers. Let’s look at a couple of assertions as they would

be written in the new style.

3NMock2, in turn, was mimicking jMock.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=37

CONSTRAINT -BASED ASSERTS 38

Joe Asks. . .

What was wrong with the old syntax?

Well, nothing was particularly wrong with the classic
syntax, per se. In fact, there are no plans to remove or
deprecate the classic syntax. The classic-style assert
methods delegate to the new methods, so there’s no
duplication. Here’s a quick history lesson that may il-
luminate the progression.a In the beginning, test fix-
ture classes had to derive from a class called Test-
Case. Deriving from TestCase both told the test run-
ner which classes contained test methods and pro-
vided assertion methods, amongst other things.

In those days, we would call assertEquals() and
other assertions, which were inherited from Test-
Case, from our test methods. The TestCase class was
also reponsible for providing a virtual setUp() and
tearDown() method. Clearly, the TestCase class
was a bit overloaded as far as its reponsibilities.

First, NUnit used attributes to mark test fixture classes,
as previously discussed. Then, NUnit extracted the
growing list of assertion methods into the family of As-
sert classes. This effectively eliminated the TestCase
class altogether. Several other XUnit frameworks have
picked up these ideas in their recent versions. This
brings us up to NUnit 2.2.

While developing NUnit 2.4, the NUnit team realised
that the Assert classes had a few too many repon-
sibilities. The Assert classes had to make sure the
actual value matched the expected value, whatever
that meant for the given assertion method. On top of
this, the Assert class needed to format the text to be
output by the test runner when the assertion failed.

These responsibilities were broken up, with the Con-
straint objects (returned by syntax helpers such as
Is.EqualTo()) bearing the responsibility of making
sure the actual value met the context-specific con-
straint of the expected value. Because they are en-
capsulated in separate objects, multiple constraints
can be combined and applied to a single value.
That leaves the text formatting when an assertion fails,
which falls to the TextMessageWriter object that
NUnit uses internally.

soon. Give the constraint-style assertions a spin, you

http://nunit.com/blogs/
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=38

CONSTRAINT -BASED ASSERTS 39

Is.EqualTo

Assert.That(actual, Is.EqualTo(expected))

This is equivalant to the Assert.AreEqual() classic

assertion method we discussed in the last section.

The Is.EqualTo() method is a syntax helper in the

NUnit.Framework.SyntaxHelpers namespace. It’s a static

method that just returns an EqualConstraint object. The

following code is equivalant, but may not read as smoothly to

some folks.

Assert.That(actual, new EqualConstraint(expected))

To specify a tolerance for floating point numbers like we did

previously, we can use a neat feature of the new syntax called

constraint modifiers. There are several that we’ll look at, but

here is one called Within() that is equivalant to our same

example that used the classic-style in the previous section.

Assert.That(10.0/3.0, Is.EqualTo(3.33).Within(0.01f));

Is.Not.EqualTo

Assert.That(actual, Is.Not.EqualTo(expected))

This is an example of one of the fun things that the

constraint-based syntax allows for and is equivalant to the

Assert.AreNotEqual() classic assertion that was discussed

previously. The usage of Not in this context isn’t exactly a

separate method, as in the other examples. By applying Not,

it wraps the EqualConstraint in a NotConstraint object.

The following code is equivalant.

Assert.That(actual, new NotConstraint(new EqualConstraint(expected)));

We can apply Not to any Is or Has syntax helper. As such, you

could also wrap the NotConstraint object around any other

Constraint object. Given the verbosity that entails, though,

we’re probably better off using the syntax helper approach.

Is.AtMost

Assert.That(actual, Is.AtMost(expected))

This constraint-style assert is equivalant to the

Assert.LessOrEqual() classic assertion method.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=39

CONSTRAINT -BASED ASSERTS 40

Is.AtMost() is just an alias for Is.LessThenOrEqualTo(),

which returns a LessThanOrEqualConstraint object.

Is.Null

Assert.That(expected, Is.Null);

Asserts that expected is null, and fails the test if it is not. To

assert the opposite, we have two choices of constraint-style

syntax.

Assert.That(expected, Is.Not.Null);

Assert.That(expected, !Is.Null);

Either of these ways will wrap the constraint in a NotCon-

traint object under the covers. Either style can be applied

to any of the constraints. Neat, huh?

Is.Empty

Assert.That(expected, Is.Empty);

Asserts that expected is an empty collection or string, and

fails the test if it is not.

Is.AtLeast

Assert.That(actual, Is.AtLeast(expected));

This is equivalant to Is.GreaterThanOrEqualTo(), which

asserts that actual >= expected (or expected <= actual) for

numeric types, or any type that is IComparable.

Is.InstanceOfType

Assert.That(actual, Is.InstanceOfType(expected));

Asserts that actual is of type expected, or a derivation of that

type.

Has.Length

Assert.That(actual, Has.Length(expected));

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=40

NUNIT FRAMEWORK 41

Asserts that actual has a Length property that returns the

expected value. Note that it can be any object with a property

named “Length”, not just a string or Collection. We could

also just assert the length using Is.EqualTo(), but this may

be easier to read for some.

In the rest of the examples, we’ll be using this new constraint-

style of assertions. If you’re more comfortable with the classic-

style, feel free to substitute those into the appropriate places

instead.

Using Asserts

We usually have multiple asserts in a given test method, as

we prove various aspects and relationships of the method(s)

under test. When an assert fails, that test method will be

aborted—the remaining assertions in that method will not be

executed this time. But that shouldn’t be of any concern; we

have to fix the failing test before we can proceed anyway. And

we fix the next failing test. And the next. And so on.

You should normally expect that all tests pass all of the time.

In practice, that means that when we introduce a bug, only

one or two tests fail. Isolating the problem is usually pretty

easy in that environment.

Under no circumstances should we continue to add features

when there are failing tests! Fix any test as soon as it fails,

and keep all tests passing all of the time.

To maintain that discipline, we’ll need an easy way to run all

the tests—or to run groups of tests, particular subsystems,

and so on.

3.4 NUnit Framework

So far, we’ve just looked at the assert methods themselves.

But you can’t just stick assert methods into a source file and

expect it to work; you need a little bit more of a framework

than that. Fortunately, it’s not too much more.

Here is a very simple piece of test code that illustrates the

minimum framework we need to get started.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=41

NUNIT FRAMEWORK 42

Line 1 using System;
- using NUnit.Framework;
- using NUnit.Framework.SyntaxHelpers;
-

5 [TestFixture]
- public class LargestTest
- {
- [Test]
- public void LargestOf3Alt()

10 {
- int[] arr = new int[3];
- arr[0] = 8;
- arr[1] = 9;
- arr[2] = 7;

15 Assert.That(Cmp.Largest(arr), Is.EqualTo(9));
- }
- } La

rg
e

st
Te

st
.c

s

This code is pretty straightforward, but let’s take a look at

each part in turn.

First, the using statement on line ?? brings in the neces-

sary NUnit classes. Remember we’ll need to tell the compiler

you’re referencing nunit.framework.dll, otherwise the us-

ing statement won’t be able to find the NUnit.Framework

namespace.

Next, we have the class definition itself on line ??: each class

that contains tests must be annotated with a [TestFixture]

attribute as shown. The class must be declared public (so

that the test runners will run it; by default, classes are in-

ternal), and it must have a public, no-parameter, construc-

tor (the default implicit constructor is all we need—adding a

constructor to a TestFixture is generally not necessary).

Finally, the test class contains individual methods annotated

with [Test] attributes. In the example, we’ve got one test

method named LargestOf3 on line ??. Any public, param-

eterless method specified with a [Test] attribute will be run

automatically by NUnit. We can include helper methods to

support clean code in our tests as well, we just don’t mark

them as tests.

In the previous example, we showed a single test, using a

single assert, in a single test method. Of course, inside a test

method, you can place any number of asserts:

using System;

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=42

NUNIT TEST SELECTION 43

Joe Asks. . .

What’s a Fixture?

From the c2.com wiki:a

In electronics testing, a fixture is an environment in
which you can test a component. Once the circuit
board or component is mounted in the text fixture, it is
provided with the power and whatever else is needed
to drive the behaviour to be tested.

A fixture in the context of unit testing is more about
the scenario we’re testing than the actual class we’re
testing. Testing a single class across multiple fixtures is
very common.

ahttp://c2.com/cgi/wiki?TestFixture

using NUnit.Framework;

using NUnit.Framework.SyntaxHelpers;

[TestFixture]

public class LargestTest

{

[Test]

public void LargestOf3()

{

Assert.That(Cmp.Largest(new int[] {9,8,7}), Is.EqualTo(9));

Assert.That(Cmp.Largest(new int[] {8,9,7}), Is.EqualTo(9));

Assert.That(Cmp.Largest(new int[] {7,8,9}), Is.EqualTo(9));

} La
rg

e
st

Te
st

.c
s

Here we have three calls to Assert.That inside a single test

method.

3.5 NUnit Test Selection

As we’ve seen so far, a fixture (that is, a class marked with

the [TestFixture] attribute) contains test methods; each

method contains one or more assertions. Multiple test fix-

tures can be included into a source code file or a compiled

assembly.

You will normally run all of the tests within an assembly just

http://c2.com/cgi/wiki?TestFixture
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=43

NUNIT TEST SELECTION 44

Organizing fixtures

Following good object-oriented design, a class should
be focused on one responsibility. This applies to test
fixtures as well—they’re just classes, after all. As such,
put tests into a fixture that describes the specific sce-
nario they are being tested in.

If there aren’t multiple scenarios, then just name the
fixture class after the class being tested. You can al-
ways extract more focused fixtures from a general fix-
ture once the general fixture starts getting too fat.

Having a fixture class focused on a specific sce-
nario, with a name that documents that scenario,
helps avoid duplicating the scenario description in
the name of several test methods.

To keep things readable in the test runner output, put
the fixture classes under a namespace that includes
the name of the class that the fixtures are testing, like
so:

namespace ZeroBay.Test.ShoppingCartTest

{

[TestFixture]

public class NoDataFixture

{

[Test]

public void OverallRateIsZero() {...}

}
}

by specifying the assembly to the test runner. You can also

choose to run individual test fixtures within an assembly us-

ing either the NUnit command line or GUI.

From the GUI, you can select an individual test, a single test

fixture, or the entire assembly by selecting it and clicking the

run button, and all the appropriate tests will be run.

From the command line, you can specify the assembly and a

particular test fixture as follows:

c:\> nunit-console assemblyname.dll /fixture:ClassName

Given this flexibility, you may want to think a bit about how to

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=44

NUNIT TEST SELECTION 45

organize test methods into individual assemblies and fixtures

to make testing easier.

For instance, you may want to run all the database-related

tests at once, or all of the tests that Fred wrote (Fred is still

on probation from the last project, and you want to keep an

eye on him).

Fortunately, NUnit has a mechanism you can use to catego-

rize and classify individual test methods and fixtures.

Categories

NUnit provides an easy way to mark and run individual tests

and fixtures by using categories. A category is just a name

that you define. You can associate different test methods with

one or more categories, and then select which categories you

want to exclude (or include) when running the tests.

Suppose among your tests you’ve got a method to find the

shortest route that our traveling salesman, Bob, can take to

visit the top n cities in his territory. The funny thing about

the Traveling Salesman algorithm is that for a small number

of cities it works just fine, but it’s an exponential algorithm.

That means that a few hundred cities might take 20,000 years

to run, for example. Even 50 cities takes a few hours, so you

probably don’t want to to include that test by default.

You can use NUnit categories to help sort out your usual tests

that you can run constantly versus long-running tests that

you’d rather only run during the automated build. Categories

are generally used for exclusion rather than inclusion.

A category is specified as an attribute. You provide a string

to identify the category when you declare the method. Then

when you run the tests, you can specify which categories you

want to run (you can specify more than one).

For instance, suppose you’ve got a few methods that only take

a few seconds to run, but one method that takes a long time to

run. You can annotate them using the category names “Short”

and “Long” (you might also consider making a category “Fred”

if you still want to keep an eye on him.)

Line 1 using NUnit.Framework;

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=45

NUNIT TEST SELECTION 46

- using NUnit.Framework.SyntaxHelpers;
-

- [TestFixture]
5 public class ShortestPathTest
- {
- TSP tsp;
-

- [SetUp]
10 public void SetUp()

- {
- tsp = new TSP();
- }
-

15 [Test]
- [Category("Short")]
- public void Use5Cities()
- {
- Assert.That(tsp.ShortestPath(5), Is.AtMost(140));

20 }
-

- // This one takes a while...
- [Test]
- [Category("Long")]

25 [Category("Fred")]
- public void Use50Cities()
- {
- Assert.That(tsp.ShortestPath(50), Is.AtMost(2300));
- }

30 } S
h

o
rt

e
st

P
a

th
Te

st
.c

s

Notice that you can specify multiple attributes (in this case,

Test and Category) on two separate lines as shown around

line 26, or combined into one line.

Now if you choose to run just “Short” methods, the two meth-

ods Use2Cities and Use10Cities will be selected to run.

If you choose “Long” methods, only Use50Cities will be se-

lected. You can also select both categories to run all three of

these methods.

In the GUI, you select which categories of tests to include and

which to exclude on the tab as shown in Figure 3.2 on the

following page. Just select each category you’re interested

and press the ADD button.

On a real project, of course, you wouldn’t bother to mark a

bunch of tests as “short.” They should all be short, except for

the ones specifically marked as “Long.”

From the command line, you can specify individual categories

to include as well. Just add the following parameter to the

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=46

NUNIT TEST SELECTION 47

Figure 3.2: NUnit Category Selection

command line:

/include=category1;category2;...

Note that multiple category names are separated by a semi-

colon (“;”).

You can also choose to exclude the listed categories so all

other tests except those in the named categories run. There’s

a check box in the GUI for this; the command line option is,

oddly enough, /exclude.

But this isn’t quite enough: it turns out that some categories

of tests should be run when no categories are selected, while

others should run only when explicitly selected.

To support this, you can specify the Explicit attribute:

[Explicit("SpecialEquipmentNeeded")]

This syntax automatically excludes the category from a run

that doesn’t specify any categories. By default, your run will

include tests without categories and tests with non-explicit

categories. However, if even one category is specified in the

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=47

NUNIT TEST SELECTION 48

GUI or the command line, then only that single category will

be run.

There’s a danger here, of course—these tests aren’t running

all the time. They probably aren’t being run in the automated

build system, either. This might lull you into a false sense of

security, so beware.

In addition to marking individual test methods as belonging to

a category, you can also mark entire fixtures. For instance, if

we wanted to flag our entire test fixture as long-running (with-

out having to mark each and every test method), we could do

so.

Line 1 using NUnit.Framework;
- using NUnit.Framework.SyntaxHelpers;
-

- [TestFixture]
5 [Category("Long")]
- public class ShortestPathTest-Revised
- {
- TSP tsp;
-

10 [Test]
- public void Use50Cities()
- {
- tsp = new TSP(); // load with default cities
- Assert.That(tsp.ShortestPath(50), Is.AtMost(2300));

15 }
-

- [Test]
- public void Use100Cities()
- {

20 tsp = new TSP(); // load with default cities
- Assert.That(tsp.ShortestPath(100), Is.AtMost(4675));
- }
-

- [Test]
25 public void Use150Cities()

- {
- tsp = new TSP(); // load with default cities
- Assert.That(tsp.ShortestPath(150), Is.AtMost(5357));
- }

30 } S
h

o
rt

e
st

P
a

th
Te

st
-R

e
v

is
e

d
.c

s

Now you can quickly exclude the whole fixture using a cate-

gory name.

Of course, not all tests need categories, and you may have

entire projects where there are no categories at all. But it’s

nice to know they are there if you do need them.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=48

NUNIT TEST SELECTION 49

Per-method Setup and Teardown

Each test should run independently of every other test; this

allows you to run any individual test at any time, in any order.

To accomplish this feat, you may need to reset some parts of

the testing environment in between tests, or clean up after

a test has run. NUnit lets you specify two methods to set up

and then tear down the environment per test using attributes:

[SetUp]

public void PerTestSetup() {
...

}

[TearDown]

public void PerTestTeardown() {
...

}

In this example, the method PerTestSetup() is called before

each one of the [Test] methods is executed, and the method

PerTestTeardown() is called after each test method is exe-

cuted, even if the test method throws an exception. This is

why we mentioned that constructors in test fixtures gener-

ally aren’t necessary. Constructors wouldn’t work the way

you wanted them to anyway, since NUnit doesn’t necessarily

recreate the TestFixture class each time it runs a test; it

discovers and runs these methods using reflection.

For example, suppose you needed some sort of database con-

nection object for each test. Rather than duplicating code in

each test method that connects to and disconnects from the

database, you could simply use setup and teardown methods.

[TestFixture]

public class DBTest

{

private Connection dbConn;

[SetUp]

public void PerTestSetup()

{
dbConn = new Connection("oracle", 1521, user, pw);

dbConn.Connect();

}

[TearDown]

public void PerTestTeardown()

{
dbConn.Disconnect();

dbConn.Dispose();

}

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=49

NUNIT TEST SELECTION 50

1. PerFixtureSetup()

2. PerTestSetup()

3. test method 1

4. PerTestTeardown()

5. PerTestSetup()

6. test method 2

7. PerTestTeardown()

8. PerFixtureTeardown()

Per-fixture setup

runs before any

tests in a

fixture, and

teardown runs

after the last

test in a fixture.

Per-test setup

runs before

each test

method, and

teardown runs

after each

method.

Figure 3.3: Execution Order of Setup Code

[Test]

public void AccountAccess()

{
// Uses dbConn
xxx xxx xxxxxx xxx xxxxxxxxx;
xx xxx xxx xxxx x xx xxxx;

}

[Test]

public void EmployeeAccess()

{

// Uses dbConn
xxx xxx xxxxxx xxx xxxxxxxxx;
xxxx x x xx xxx xx xxxx;

}
} D

B
Te

st
.c

s

In this example, the method PerTestSetup() will be called

before TestAccountAccess(). After TestAccountAccess()

has finished, PerTestTearDown() will be called. PerTest-

Setup() will be called again, followed by TestEmployee-

Access() and then PerTestTeardown() again.

Per-fixture Setup and Teardown

Normally per-method setup is all you need, but in some cir-

cumstances you may need to set something up or clean up af-

ter the entire test class has run; for that, you need per-fixture

setup and teardown (the difference between per-test and per-

fixture execution order is shown in Figure 3.3 on the previous

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=50

MORE NUNIT ASSERTS 51

page). All you need to do is annotate your setup methods with

the following attributes:

[TestFixtureSetUp]

public void PerFixtureSetup() {
...

}

[TestFixtureTearDown]

public void PerFixtureTeardown() {
...

}

Note that you can use both per-fixture and per-test methods

in the same class. While setup and teardown methods gener-

ally come in pairs, they don’t have to. Very often, a fixture will

have a setup, but no teardown. A teardown without a setup,

while rare, is also not unheard of. We can also define set-up

methods across inheritance boundaries, in both base classes

and derived classes. They will work together as if they were

all defined in the same class.

3.6 More NUnit Asserts

In addition to the basic asserts we’ve seen, NUnit provides

additional asserts to aid in testing collections and files. If

you prefer the classic-style assertion methods, check out the

StringAssert and CollectionAssert classes as well as the

NUnit documentation.

List.Contains

Assert.That(actualCollection,

List.Contains(expectedValue))

Assert.That({5, 3, 2}, List.Contains(2))

Tests that the expected value is contained within actualCol-

lection.

Is.SubsetOf

Assert.That(actualCollection,

Is.SubsetOf(expectedCollection))

Assert.That(new byte[] {5, 3, 2},

Is.SubsetOf(new byte[] {1, 2, 3, 4, 5}))

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=51

MORE NUNIT ASSERTS 52

Tests that the elements of actualCollection are contained

within expectedCollection, regardless of order.

Text.StartsWith

Assert.That(actual,

Text.StartsWith(expected))

Assert.That("header:data.",

Text.StartsWith("header:"))

Tests that the expected string is at the beginning of actual.

This is case sensitive by default; to ignore case sensitivity, we

need to add the IgnoreCase constraint modifier.

Assert.That("header:data.",

Text.StartsWith("HeadeR").IgnoreCase)

Text.Matches

Assert.That(actual, Text.Matches(expected))

Assert.That("header:data.",

Text.Matches("$header^\."))

Tests that the expected regular expression string matches

actual. Here we’re making sure the actual string starts

with “header”, and ends with a period character. We

could also have used a combination of Text.StartsWith,

Text.EndsWith, or Text.Contains constraints.

FileAssert.AreEqual / AreNotEqual

FileAssert.AreEqual(FileInfo expected,

FileInfo actual)

FileAssert.AreEqual(String pathToExpected,

String pathToActual)

Test whether two files are the same, byte for byte. Note that

if we do the work of opening a Stream (file-based, or not), we

can use the EqualsConstraint instead, like so:

Stream expectedStream = File.OpenRead("expected.bin");

Stream actualStream = File.OpenRead("actual.bin");

Assert.That(

actualStream,

Is.EqualTo(expectedStream)

);

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=52

NUNIT CUSTOM ASSERTS 53

3.7 NUnit Custom Asserts

The standard asserts that NUnit provides are usually suffi-

cient for most testing. However, you may run into a situation

where it would be handy to have your own, customized as-

serts. Perhaps you’ve got a special data type, or a common

sequence of actions that is done in multiple tests.

The worst thing you can do is slavishly copy the same se-

quence of test code over and over again. “Copy and paste” of

common code in the tests can be a fatal disease.

Instead, tests should be written to the same high standards

as regular code, which means honoring good coding practices

such as the DRY principle,4 loose coupling, orthogonality, and

so on. Factor out common bits of test harness into real meth-

ods, and use those methods in your test cases.

This is real code, and needs to be well-written, and well-

factored so you can reuse it and keep it up to date easily as

the system grows and evolves.

Don’t be afraid to write your own assertion-style methods. For

instance, suppose you are testing a financial application and

virtually all of the tests use a data type called Money.

using System;

using NUnit.Framework;

using NUnit.Framework.SyntaxHelpers;

public class MoneyAssert

{

// Assert that the amount of money is an even

// number of dollars (no cents)

public static void AssertNoCents(Money amount,

String message)

{
Assert.That(

Decimal.Truncate(amount.AsDecimal()),

Is.EqualTo(amount.AsDecimal()),

message);

}

// Assert that the amount of money is an even

// number of dollars (no cents)

public static void AssertNoCents(Money amount)

4DRY stands for “Don’t Repeat Yourself.” It’s a fundamental technique

that demands that every piece of knowledge in a system must have a single,

unambiguous, and authoritative representation [HT00].

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=53

NUNIT AND EXCEPTIONS 54

{
AssertNoCents(amount, String.Empty);

}
}

M
o

n
e

y
A

ss
e

rt
.c

s

Note that we provide both forms of assert: one that takes

a string and one that does not. Note also that we didn’t

duplicate any code in doing so; we merely forward the call on.

Now any other test classes in the project that need to test

Money can use our own custom assertion method. If multiple

test fixture classes needed to use our custom assertions or

other support methods, we could also extract a common base

fixture class they would then derive from. We’ll talk more

about that later in Chapter 8.

using NUnit.Framework;

[TestFixture]

public class SomethingTest

{

[Test]

public void CountDeMonet()

{
Money m = new Money(42.00);

m.Add(2);

MoneyAssert.AssertNoCents(m);

}
} S

o
m

e
th

in
g

Te
st

.c
s

For more examples, take a look at the NUnit source code itself

(perhaps the StringAssert code). That’s part of the beauty

of open source—you can go see the code for yourself, and see

how the magic is done.

3.8 NUnit and Exceptions

We might be interested in two different kinds of exceptions:

1. Expected exceptions resulting from a test

2. Unexpected exceptions from something that’s gone hor-

ribly wrong

Contrary to what you might think, exceptions are really good

things—they tell us that something is wrong. Sometimes in a

test, we want the method under test to throw an exception.

Consider a method named ImportList(). It’s supposed to

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=54

NUNIT AND EXCEPTIONS 55

throw an ArgumentException if passed a null list. We must

test for that explicitly.

Guarding against bad data is good defensive programming. If

a null parameter is passed in and not used immediately, the

eventual NullReferenceException becomes a time bomb of

sorts. It will go off at an unexpected moment, in some far

away corner of the code. You then get the unenviable task of

tracking down where in the system the bad data came from

originally. But by failing quickly, you’ll find the root of the

problem quickly, and much more easily. Some people just

like pain, but we don’t, so we prefer to decrease our time spent

debugging by employing this practice.

With what we’ve learned so far, we can construct the following

test to ensure that the exception is thrown as expected.

[Test]

public void NullList()

{
try

{

WhitePages.ImportList(null);

Assert.Fail("ArgumentNullException should have been thrown");

}

catch (ArgumentNullException)

{

}
}

This test will fail if any exception other than Argument-

NullException is thrown, or if no exception is thrown at

all. If no exception is thrown, the Assert.Fail() method

is called, which fails the test. If an exception other than Ar-

gumentNullException is thrown, it won’t be caught by the

catch defined, which fails the test. This works, but it’s not

exactly aesthetically pleasing.

More practically speaking, this style of test just doesn’t ex-

press our intentions very well, and doesn’t scale well to more

complicated cases. The NUnit user community and authors

agreed, so for expected exceptions, NUnit now provides the

[ExpectedException] attribute:

[TestFixture]

public class ImportListTests

{

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=55

NUNIT AND EXCEPTIONS 56

[Test]

[ExpectedException(typeof(ArgumentNullException))]

public void NullList() {

WhitePages.ImportList(null);

// Shouldn’t get to here

}
} E

xc
e

p
ti
o

n
Te

st
.c

s

This test method is now expected to throw an exception (from

the call to ImportList()). If it doesn’t, the test will fail. If the

exact exception specified fires as expected, the test passes. If

a different exception is thrown (even a super-class of the one

specified), the test fails. It might be tempting to just expect

the base Exception type, but you’re skirting around the fact

the tests are telling you your design needs some work.

You want to be as specific with exceptions in this context as

you would be in a catch() statement. Otherwise, you’ll get

tests that pass when a totally different exception is thrown,

and you might not know about it until the system starts mal-

functioning in the hands of end-users.

Two salient details worth noting: Once the expected exception

fires, any remaining code in the test method will be skipped. If

the SetUp method throws an exception before a test method’s

code executes, the test will always be reported as failing even

though the actual test code didn’t run. Furthermore, even

if SetUp throws, TearDown method will still be run (if one is

declared).

In general, you should test a method for every expected excep-

tion, and make sure that the method throws it when it should.

That covers us for expected exceptions, but what about unex-

pected exceptions?

NUnit will take care of those for you. For instance, suppose

you are reading a file of test data. Rather than catching the

possible I/O exceptions yourself, just let them propagate out

to the test framework.

[Test]

public void TestData1() {

StreamReader sr = new StreamReader("data.txt");
xxx xxx xxxxxx xxxxx xxxx;

}

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=56

TEMPORARILY IGNORING TESTS 57

Even better, NUnit will report the entire stack trace right down

to the bug itself, not just to some failed assert, which helps

when trying to figure out why a test failed. If you have enabled

debugging information during compilation of your assembly

under test, it will also give the exact source code line numbers

in the stack trace.

When compiling under mono’s C# compiler (gmcs) or Microsoft

.NET’s C# compiler (csc), add -debug+ to the command line.

If you’re not working at the command line, this can be accom-

plished by changing the Project settings in whatever IDE you

happen to be using. When running under mono, you’ll need to

use the -debug option to the mono runtime executable (mono

-debug) for it to actually use that generated debug informa-

tion.5

3.9 Temporarily Ignoring Tests

Normally, you want all tests to pass all of the time. But sup-

pose you’ve thought up a bunch of tests first, written them,

and are now working your way through implementing the

code required to pass the tests. What about all those new

tests that would fail now?

You can go ahead and write these tests, but you don’t want the

testing framework to run these tests just yet. NUnit provides

the [Ignore] attribute:

[Test]

[Ignore("Out of time. Will Continue Monday. --AH")]

public void Something()

{
xxx xxx xxxxxx xxxxx xxxx;

} E
xc

e
p

ti
o

n
Te

st
.c

s

NUnit will report that this method was skipped (and show a

yellow bar in the GUI version), so that you won’t forget about

it later.

In other testing frameworks and languages, you’d have to ei-

ther name the method differently or comment it out. When

using JUnit in Java, for instance, methods whose names start

5Microsoft .NET doesn’t require this; hopefully mono will remove this re-

quirement in a future release.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=57

TEMPORARILY IGNORING TESTS 58

with “test” (as in testSomething) will be run as tests; you

have to name the method something else until you’re ready

to tackle it. In any language, the code still has to compile

cleanly; if it’s not ready for that yet, then you should com-

ment out the offending parts.

It’s a good idea to to put a meaningful message, and perhaps

even your initials, into the ignore so that the team knows why

this test isn’t running. Are you still working on it? Do you

need something from someone else in order to finish? Can

someone else finish it up for you (in a geographically diverse

team, perhaps)? Don’t just Ignore it and forget about it;

that’s a Broken Window.6

You want to avoid at all costs the habit of ignoring failing test

results. You don’t see green until they all work: just the ab-

sence of a red bar (or error messages) does not mean success.

Ignoring Platform-dependent Tests

There is one small exception to that rule; what to do when cer-

tain tests have to be ignored because of the platform on which

you are running? This scenario isn’t uncommon and can oc-

cur if you’re writing a cross-platform application (whether it

be for .NET 2.0 and mono, or specifically for .NET 1.1), some

of your tests may only run (or pass) on a specific platform.

This was a problem NUnit itself faced, so they introduced the

Platform attribute, which is used like this:

[Test]

[Platform(Exclude = "Mono")]

public void RemoveOnEmpty() {
xxx xx xxx xxxxx xx xx xxx;

}

[Test, Platform(Exclude = "Net-1.0,Win95")]

public void EmptyStatusBar() {
xxx xx xxx xxxxx xx xx xxx;

}

As you can see, Linux-specific tests that don’t work on Solaris,

MacOS, or certain Windows or .NET versions can be marked

6See [HT00].

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=58

TEMPORARILY IGNORING TESTS 59

as such. 7 When using the Platform attribute, you will still

get a green bar in the GUI (not yellow) even in the prescense

of tests ignored via this attribute. Other than that, it operates

similarly to the Ignore attribute.

The point again is that you want to avoid any situation where

you begin to ignore failing tests out of habit. Platform en-

sures that the proper tests are run only in the proper envi-

ronment.

Now that you’ve got a good idea of how to write tests, it’s time

to take a closer look at figuring out what to test.

7A comprehensive list of the platforms can be found in the NUnit docu-

mentation on http://nunit.org.

http://nunit.org
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=59

Chapter 4

What to Test:
The Right-BICEP

Now that you know how to test, we need to spend some chap-

ters looking at what to test; or more precisely, the kinds of

things that might need testing.

It can be hard to look at a method or a class and try to come

up with all the ways it might fail and to anticipate all the bugs

that might be lurking in there. With enough experience, you

start to get a feel for those things that are “likely to break,”

and can effectively concentrate on testing in those areas first.

But without a lot of experience, it can be hard and frustrating

trying to discover possible failure modes. End-users are quite

adept at finding our bugs, but that’s both embarrassing and

damaging to our careers! What we need are some guidelines,

some reminders of areas that might be important to test.

Let’s take a look at six specific areas to test that will help

strengthen your testing skills, using your RIGHT -BICEP:

• Right — Are the results right?

• B — Are all the boundary conditions CORRECT?

• I — Can you check inverse relationships?

• C — Can you cross-check results using other means?

• E — Can you force error conditions to happen?

ARE THE RESULTS RIGHT? 61

• P — Are performance characteristics within bounds?

4.1 Are the Results Right?

The first and most obvious area to test is simply to see if the Right BICEP

expected results are right—to validate the results.

It’s a good starting point. We’ve seen simple data validation

already: the tests in Chapter 2 that verify that a method re-

turns the largest number from a list.

These are usually the “easy” tests, and many of these sorts of

validations may even be specified in the requirements. If they

aren’t, you’ll probably need to ask someone. You need to be

able to answer the key question:

If the code ran correctly, how would I know?

If you cannot answer this question satisfactorily, then writing

the code—or the test—may be a complete waste of time. “But

wait,” you may say, “that doesn’t sound very agile! What if

the requirements are vague or incomplete? Does that mean

we can’t write code until all the requirements are firm?”

No, not at all. If the requirements are truly not yet known,

or complete, you can always invent some as a stake in the

ground. They may not be correct from the user’s point of

view, but you now know what you think the code should do,

and so you can answer the question.

Of course, you’ll then arrange for feedback with users to

fine-tune your assumptions. The definition of “correct” may

change over the lifetime of the code in question, but at any

point, you should be able to prove (using automated tests)

that the code is doing what you think it ought.

Using Data Files

For sets of tests with large amounts of test data, you might

want to consider putting the test values and/or results in a

separate data file that the unit test reads in. This doesn’t need

to be a very complicated exercise—and you don’t even need to

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=61

ARE THE RESULTS RIGHT? 62

using NUnit.Framework;

using NUnit.Framework.SyntaxHelpers;

using System;

using System.IO;

using System.Collections.Generic;

[TestFixture]

public class LargestDataFileTests

{

private int[] getNumberList(string line)

{

string[] tokens = line.Split(null);

List<int> numberList = new List<int>();

for (int i=1; i < tokens.Length; i++)

{

numberList.Add(Int32.Parse(tokens[i]));

}

return numberList.ToArray();

}

private int getLargestNumber(string line)

{

string[] tokens = line.Split(null);

string val = tokens[0];

int expected = Int32.Parse(val);

return expected;

}

private bool hasComment(string line)

{
return line.StartsWith("#");

}

// Run all the tests in testdata.txt (does not test
// exception case). We’ll get an error if any of the

// file I/O goes wrong.

[Test]

public void FromFile()

{

string line;

// most IDEs output the test bi-
nary in bin/[Debug,Release]

StreamReader reader =
new StreamReader("../../testdata.txt");

while ((line = reader.ReadLine()) != null)
{

if (hasComment(line))
{

continue;

}

int[] numberListForLine = getNumberList(line);

int expectedLargestNumber = getLargestNumber(line);

int actualLargestNumber = Cmp.Largest(numberListForLine));

Assert.That(expectedLargestNumber, Is.EqualTo(actualLargestNumber));

}
}

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=62

ARE THE RESULTS RIGHT? 63

use XML.1 Figure 4.1 on the preceding page is a version of

TestLargest that reads in all of the tests from a data file.

The data file has a very simple format; each line contains a

set of numbers. The first number is the expected answer, the

numbers on the rest of the line are the arguments with which

to test. We’ll allow a pound-sign (#) for comments, so that you

can put meaningful descriptions and notes in the test file.

The test file can then be as simple as:

#

Simple tests:

#

9 7 8 9
9 9 8 7
9 9 8 9
#

Negative number tests:

#

-7 -7 -8 -9
-7 -8 -7 -8
-7 -9 -7 -8
#

Mixture:

#

7 -9 -7 -8 7 6 4
9 -1 0 9 -7 4
#

Boundary conditions:

#

1 1
0 0
2147483647 2147483647
-2147483648 -2147483648 te

st
d

a
ta

.t
xt

In this example we’re only running one particular test (using

one assert), but you could extend that to run as many differ-

ent tests on the same data as practical.

For just a handful of tests (as in this example), the separate

data file approach is probably not worth the effort or the per-

formance overhead of the file I/O. In cases where you can’t

justify an external file, C#’s string literals paired with a Tex-

tReader can provide the same benefits described above with-

out the less palatable aspects:

string oneCommentWithTwoSets = @"

1This is clearly a joke. XML is mandatory on all projects today, isn’t it?

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=63

BOUNDARY CONDITIONS 64

comment line
9 7 8 9
-9 9 8 7
"

But say this was a more advanced application, with tens or

even hundreds of test cases in this form. Then the file ap-

proach becomes a very compelling choice.

Be aware that test data, whether it’s in a file or in the test

code itself, might well be incorrect. In fact, experience sug-

gests that test data is more likely to be incorrect than the

code you’re testing, especially if the data was hand-calculated

or obtained from a system we’re replacing (where new fea-

tures may deliberately cause new results). When test data

says you’re wrong, double- and triple-check that the test data

is right before attacking the code. Ask a co-worker to take a

look, or just take a break (away from the keyboard); some-

times it’s difficult to see the woods through the trees.

Something else to think about: the code as presented in this

example does not test any exception cases. How might you

implement that? Also notice that we wrote a non-test “helper”

method to parse the numbers from the data file. It’s per-

fectly okay—even encouraged—to create support methods and

classes as needed. We might even extract these support meth-

ods into a TestFileParser class if we wanted to share this

code across different fixtures, or just to unclutter the test

class itself.

Do whatever makes it easiest for you to prove that the method

is right.

4.2 Boundary Conditions

In the previous “largest number” example, we discovered sev- Right B ICEP

eral boundary conditions: when the largest value was at the

end of the array, when the array contained a negative number,

an empty array, and so on.

Identifying boundary conditions is one of the most valuable

parts of unit testing, because this is where most bugs gener-

ally live—at the edges. These nether-regions of untested code

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=64

BOUNDARY CONDITIONS 65

are where almost all exploitable security vulnerabilities come

from.

Some conditions you might want to think about:

• Totally bogus or inconsistent input values, such as a file

name of "!*W:X\&Gi/w∼>g/h#WQ@".

• Badly formatted data that is missing delimeters or ter-

minators, such as an e-mail address without a top-level

domain ("fred@foobar.").2

• Empty or missing values (such as 0, 0.0, an empty string,

an empty array, or null), or missing in a sequence (such

as a missing TCP packet).

• Values far in excess of reasonable expectations, such as

a person’s age of 10,000 years or a password string with

10,000 characters in it.

• Duplicates in lists that shouldn’t have duplicates.

• Ordered lists that aren’t, and vice-versa. Try handing a

pre-sorted list to a sort algorithm, for instance—or even

a reverse-sorted list.

• Things that arrive out of order, or happen out of expected

order, such as trying to print a document before logging

in, or getting fragmented IP packets out of order, for in-

stance.

An easy way to think of possible boundary conditions is to

remember the acronym CORRECT. For each of these items,

consider whether or not similar conditions may exist in your

method that you want to test, and what might happen if these

conditions were violated:

• Conformance — Does the value conform to an expected

format?

• Ordering — Is the set of values ordered or unordered as

appropriate?

2A popular mail service suffered from an exploitable bug like this involving

a missing ’>’ in SMTP headers.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=65

CHECK INVERSE RELATIONSHIPS 66

• Range — Is the value within reasonable minimum and

maximum values?

• Reference — Does the code reference anything external

that isn’t under direct control of the code itself?

• Existence — Does the value exist (e.g., is non-null, non-

zero, present in a set, etc.)?

• Cardinality — Are there exactly enough values?

• Time (absolute and relative) — Is everything happening

in order? At the right time? In time?

Because boundary conditions are such an important area to

test, we’ll examine these in detail in the next chapter (which

makes Right-BICEP a nested acronym).

4.3 Check Inverse Relationships

Right B I CEP

Some methods can be checked by applying their logical in-

verse. For instance, you might check a method that calcu-

lates a square root by squaring the result, and testing that it

is tolerably close to the original number:

[Test]

public void SquareRootUsingInverse() {

double x = MyMath.SquareRoot(4.0);

Assert.That(4.0, Is.EqualTo(x*x).Within(0.0001));

} R
o

o
ts

Te
st

.c
s

You might check that some data was successfully inserted

into a database, then search for it, and then delete it. You

might transfer money into an account, then transfer the same

amount out of the account. Any of these operations apply an

“inverse” to see if you get back to an original state.

But be cautious when you’ve written both the original routine

and it’s inverse, as some bugs might be masked by a com-

mon error in both routines. Where possible, use a different

source for the inverse test. In the square root example, we’re

just using regular multiplication to test our method. For the

database search, we’ll probably use a vendor-provided delete

routine to test our insertion.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=66

CROSS-CHECK USING OTHER MEANS 67

4.4 Cross-check Using Other Means

You might also be able to cross-check results of your method Right BI C EP

using different means.

Usually there is more than one way to calculate some quan-

tity; we might pick one algorithm over the others because it

performs better, or has other desirable characteristics. That’s

the one we’ll use in production, but we can use one of the

other versions to cross-check our results in the test system.

This technique is especially helpful when there’s a proven,

known way of accomplishing the task that happens to be too

slow or too inflexible to use in production code.

We can use that somewhat lesser version to our advantage

to check that our new super-spiffy version is producing the

same results:3

[Test]

public void SquareRootUsingStd() {

double number = 3880900.0;

double root1 = MyMath.SquareRoot(number);

double root2 = Math.Sqrt(number);

Assert.That(root2, Is.EqualTo(root1).Within(0.0001));

} R
o

o
ts

Te
st

.c
s

Another way of looking at this issue is to use different pieces

of data from the class itself to make sure they all “add up,” or

reconcile. That counts as a cross-check as well.

For instance, suppose you were working on a library’s

database system (that is, a brick-and-mortar library that

lends out real books). In this system, the number of copies

of a particular book should always balance. That is, the num-

ber of copies that are checked out plus the number of copies

sitting on the shelves should always equal the total number

of copies in the collection. These are separate pieces of data,

and may even be reported by objects of different classes, but

they still have to agree, and so can be used to cross-check one

another.

3Some spreadsheet engines (as found in Microsoft ExcelTM, etc.) employ

similar techniques to check that the models and methods chosen to solve

a particular problem are appropriate, and that the answers from different

applicable methods agree with each other.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=67

FORCE ERROR CONDITIONS 68

As with the inverse checks above, make sure you aren’t simply

exercising the same underlying code in two different ways—

the point of cross-checking is to explicitly use different code

to verify the same result.

4.5 Force Error Conditions

In the real world, errors happen. Disks fill up, network lines Right BIC E P

drop, e-mail goes into a black hole, and programs crash. You

should be able to test that your code handles all of these real-

world problems by forcing errors to occur.

That’s easy enough to do with invalid parameters and the like,

but to simulate specific network errors—without unplugging

any cables—takes some special techniques. We’ll discuss one

way to do this using Mock Objects in Chapter 6 on page 90.

But before we get there, consider what kinds of errors or other

environmental constraints you might introduce to test your

method? Make a short list before reading further.

STOPThink about this for a moment before reading on. . .

Here are a few environmental things we’ve thought of.

• Running out of memory

• Running out of disk space

• Issues with wall-clock time

• Network availability and errors

• Insufficient File or Path permissions

• System load

• Limited color palette

• Very high or very low video resolution

These are just general categories, for each of them there may

be more subtle issues worth testing. For instance, you might

test that the code can handle the case when the network itself

goes down, but what about if the network is up and the DNS

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=68

PERFORMANCE CHARACTERISTICS 69

server is down? Or the network is up, but slowed to a timeout-

inducing crawl due to a denial of service attack? These things

happen, and if our code needs to handle these sort of errors,

then we need to test for them. If our code isn’t supposed to

handle these sorts of errors, we should still write a test that

validates that behaviour using the ExpectedException we

previously discussed.

4.6 Performance Characteristics

One area that might prove beneficial to examine is perfor- Right BICE P

mance characteristics—not performance itself, but trends as

input sizes grow, as problems become more complex, and so

on.

What we’d like to achieve is a quick regression test of per-

formance characteristics. All too often, we might release one

version of the system that works okay, but somehow by the

next release it has become dead-dog slow. We don’t know

why, or what change was made, or when, or who did it, or

anything. And the end users are screaming bloody murder.

To avoid that awkward scenario, you might consider some

rough tests just to make sure that the performance curve re-

mains stable. For instance, suppose we’ve written a filter that

identifies web sites that we wish to block (using our new prod-

uct to view naughty pictures might get us in all sorts of legal

trouble, after all.)

The code works fine with a few dozen sample sites, but will it

work as well with 10,000? 100,000? Let’s write a unit test to

find out.

Line 1 [TestFixture]
- public class FilterTest
- {
- Timer timer;

String naughty_url = "http://www.xxxxxxxxx.com";
5 URLFilter filter;
-

- [SetUp]
- public void Initialize()
- {

10 timer = new Timer();
- }
-

- [Test]

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=69

PERFORMANCE CHARACTERISTICS 70

- public void SmallList()
15 {

- filter = new URLFilter(SMALL_LIST);
- timer.Start();
- filter.Check(naughty_url);
- timer.End();

20 Assert.That(timer.ElapsedTime, Is.LessThan(1.0));
- }
- }
- [Test]
- [Category("Long")]

25 public void HugeList()
- {
- filter = new URLFilter(HUGE_LIST);
- timer.Start();
- filter.Check(naughty_url);

30 timer.End();
- Assert.That(timer.ElapsedTime, Is.LessThan(10.0));
- }
- } Fi

lt
e

rT
e

st
.c

s

This gives us some assurance that we’re still meeting perfor-

mance targets. But because this one test takes 6–7 seconds to

run, we may not want to run it every time. As long as we run

it in our automated build at least every couple of days, we’ll

quickly be alerted to any problems we may introduce, while

there is still time to fix them.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=70

Chapter 5

CORRECT
Boundary Conditions

As we said in the last chapter, boundary conditions are such

a vibrant source of bugs that we need a whole chapter to talk

about them. Many bugs in code occur around boundary con-

ditions, that is, under conditions where the code’s behavior

may be different from the normal, day-to-day routine.

For instance, suppose we have a function that takes two inte-

gers:

public int Calculate(int a, int b) {

return a / (a+b);

} R
o

o
ts

Te
st

.c
s

Most of the time, this code will return a number just as we

expect. But if the sum of a and b happens to equal zero, we

will get a DivideByZeroException instead of a return value.

That is a boundary condition—at the edge of normal expecta-

tions. It’s a place where things might suddenly go wrong, or

at least behave differently from what we wanted.

To help us think of tests for boundary conditions, we’ll use

the acronym CORRECT:

• Conformance—Does the value conform to an expected

format?

CONFORMANCE 72

• Ordering—Is the set of values ordered or unordered as

appropriate?

• Range—Is the value within reasonable minimum and

maximum values?

• Reference—Does the code reference anything external

that isn’t under direct control of the code itself?

• Existence—Does the value exist (e.g., is non-null, non-

zero, present in a set, etc.)?

• Cardinality—Are there exactly enough values?

• Time (absolute and relative)—Is everything happening in

order? At the right time? In time?

Let’s look at each one of these in turn. Remember that for

each of these areas, you want to consider data that is passed

in as arguments to your method as well as internal data that

you maintain inside your method and class.

The underlying question that we want to answer fully is:

What else can go wrong?

Once you think of something that could go wrong, write a test

for it. Once that test passes, again ask yourself, “what else

can go wrong?” and write another test, and so on.

There’s always something else that could go wrong, and these

are some of the more productive areas to consider.

5.1 Conformance

Many times you expect or produce data that must conform to C ORRECT

some specific format. An e-mail address, for instance, isn’t

just a simple string. You expect that it must be of the form:

name@somewhere.com

With the possibility of extra dotted parts:

firstname.lastname@subdomain.somewhere.com

And even oddballs like this one:

firstname.lastname%somewhere@subdomain.somewhere.com

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=72

CONFORMANCE 73

Suppose you are writing a method that will extract the user’s

name from their e-mail address. You’ll expect that the user’s

name is the portion before the “@” sign. What will your code

do if there is no “@” sign? Will it work? Throw an exception?

What about multiple “@” signs or a string of only @” signs? Is

this a boundary condition you need to consider?1

Validating formatted string data such as e-mail addresses,

phone numbers, account numbers, or file names is usually

straightforward, but be aware of internationalization issues:

not only could there be issues with the format (many coun-

tries don’t have states or provinces), but issues with character

encoding as well.2 Will you be getting unicode data, and if so,

will you be able to handle it?

Then there’s more complex, structured data to consider. Sup-

pose you are reading report data that contains a header record

linked to a number of data records, and finally to a trailer

record. How many conditions might we have to test?

• What if there’s no header, just data and a trailer?

• What if there’s no data, just a header and trailer?

• What if there’s no trailer, just a header and data?

• What if there’s just a trailer?

• What if there’s just a header?

• What if there’s just data?

Just as with the simpler e-mail address example, you have

to consider what will happen if the data does not conform to

the structure you think it should. This directly applies to any

code that parses file formats or network protocols, avenues

by which attacks will come either on purpose or unwittingly.

It’s best to code defensively and verify the defenses with unit

tests,3 since an attacker will probably end up testing them for

you eventually whether we want them to or not.

1E-mail addresses are actually very complicated. A close reading of

RFC822 may surprise you.
2Input validation should always be done on model objects, sometimes in

addition to the UI validation.
3A fun way to think about this is, “How would I attack this function?”

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=73

ORDERING 74

And of course, if you are creating data (not just validating

it) such as an e-mail address (possibly building it up from

different sources) or the structured data above, you want to

test your result to make sure it conforms as well.

5.2 Ordering

Another area to consider is the order of data, or the position C O RRECT

of one piece of data within a larger collection. For instance,

in the Largest() example in the previous chapter, one bug

manifested itself depending on whether the largest number

you were searching for was at the beginning or end of the list.

That’s one aspect of ordering. Any kind of search routine

should be tested for conditions where the search target is first

or last, as many common bugs can be found that way.

For another aspect of ordering, suppose you are writing a

method that is passed a collection containing a restaurant

order. You would probably expect that the appetizers will ap-

pear first in the order, followed by the salad (and that all-

important dressing choice), then the entree and finally a deca-

dent dessert involving lots of chocolate.

What happens to your code if the dessert is first, and the

entree is last?

If there’s a chance that sort of thing can happen, and if it’s the

responsibility of your method to deal with it if it does, then you

need to test for this condition and address the problem. Now,

it may be that this is not something your method needs to

worry about. Perhaps this needs to be addressed at the user

input level (see “Testing Invalid Parameters” later on, and the

chapter on GUI testing on page 165. Bear in mind that busi-

ness logic does not belong in the GUI itself–ever. User inter-

face components (graphical or otherwise) should only contain

code for the UI, not for anything else.

If you’re writing a sort routine, what might happen if the set of

data is already ordered? Or worse yet, sorted in precisely re-

verse order? Ask yourself if that could cause trouble—if these

are conditions that might be worth testing, too. Then test it

anyway, you may be surprised to find it makes a difference.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=74

RANGE 75

If you are supposed to maintain something in order, verify that

it is. For example, if your method is part of the GUI that is

sending the dinner order back to the kitchen, you should have

a test that verifies that the items are in the correct serving

order:

[Test]

public void KitchenOrder()

{

Order order = new Order();

FoodItem dessert = new Dessert("Chocolate Decadence");

FoodItem entree = new Entree("Beef Oscar");
FoodItem salad = new Salad("Parmesan Peppercorn");

// Add out of order

order.AddFoodItem(dessert);

order.AddFoodItem(entree);

order.AddFoodItem(salad);

// But should come out in serving order

IEnumerator itr = order.GetEnumerator();

Assert.That(salad, Is.EqualTo(itr.Current));

itr.MoveNext();

Assert.That(entree, Is.EqualTo(itr.Current));

itr.MoveNext();

Assert.That(dessert, Is.EqualTo(itr.Current));

itr.MoveNext();

// No more left
Assert.That(itr.MoveNext(), Is.False);

} K
it
c

h
e

n
Te

st
.c

s

Of course, from a human factors standpoint, you’d need to

modify the code so that it’s flexible enough to allow people to

eat their ice cream first, if so desired. In which case, you’d

need to add a test to prove that your four-year old nephew’s

ice cream comes with everyone else’s salads, but Grandma’s

ice cream comes at the end with your cappuccino.

5.3 Range

Range is a convenient catch-all word for the situation where a CO R RECT

variable’s type allows it to take on a wider range of values than

you need—or want. For instance, a person’s age is typically

represented as an integer, but no one has ever lived to be

200,000 years old, even though that’s a perfectly valid integer

value. Similarly, there are only 360 degrees in a circle, even

though degrees are commonly stored in an integer.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=75

RANGE 76

In good object oriented design, you do not use a built-in value

type (e.g., an int or Int32) to store a bounded-integer value

such as an age, or a compass heading.

using System;

//
// Compass bearing

//

public class Bearing {

protected int bearing; // 0..359

//
// Initialize a bearing to a value from 0..359

//

public Bearing(int num_degrees) {

if (num_degrees < 0 || num_degrees > 359) {

throw new ArgumentException("Bad bearing");

}
bearing = num_degrees;

}

//
// Return the angle between our bearing and another.

// May be negative.

//

public int AngleBetween(Bearing anOther) {

return bearing - anOther.bearing;

}
} B

e
a

ri
n

g
.c

s

Notice that the angle returned is just an int—a plain old num-

ber, as we are not placing any range restrictions on the result

(it may be negative, etc.)

By encapsulating the concept of a bearing within a class,

you’ve now got one place in the system that can filter out bad

data. You cannot create a Bearing object with out of range

values. Thus, the rest of the system can use Bearing objects

and be assured that they contain only reasonable values.4

Other ranges may not be as straightforward. For instance,

suppose you have a class that maintains two sets of x, y co-

ordinates. These are just integers, with arbitrary values, but

the constraint on the range is such that the two points must

describe a rectangle with no side greater than 100 units. That

is, the allowed range of values for both x, y pairs is interdepen-

4For types like these, a struct might be preferred if you have a deep

enough knowledge of the CLR to care.[Ric06]

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=76

RANGE 77

dent. You’ll want a range test for any method that can affect a

coordinate to ensure that the resulting range of the x, y pairs

remains legitimate. For more information on this topic, see

“invariants” in the Design Issues chapter on page 143.

Since you will likely call this from a number of different tests,

it probably makes sense to make a new assert method:

public const int MAX_DIST = 100;

static public void AssertPairInRange(Point one,

Point two,

String message)

{
Assert.That(

Math.Abs(one.X - two.X),

Is.AtMost(MAX_DIST),
message

);

Assert.That(

Math.Abs(one.Y - two.Y),

Is.AtMost(MAX_DIST),
message

);

} P
a

ir
Te

st
.c

s

But the most common ranges you’ll want to test probably de-

pend on physical data structure issues, not application do-

main constraints. Take a simple example like a stack class

that implements a stack of Strings using an array:

public class MyStack

{

public MyStack()

{

elements = new string[100];

nextIndex = 0;

}

public String Pop()

{

return elements[--nextIndex];

}

// Delete n items from the elements en-masse

public void Delete(int n)

{
nextIndex -= n;

}

public void Push(string element)

{

elements[nextIndex++] = element;

}

public String Top()

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=77

RANGE 78

{
return elements[nextIndex-1];

}

private int nextIndex;

private string[] elements;

} M
y
S
ta

c
k
.c

s

There are some potential bugs lurking here, as there are no

checks at all for either an empty stack or a stack overflow.

However we manipulate the index variable nextIndex, one

thing is supposed to be always true: (next_index >= 0 &&

next_index < stack.Length). We’d like to check to make

sure this expression is true.

Both nextIndex and stack are private variables; you don’t

want to have to expose those just for the sake of testing. There

are several ways around this problem; for now we’ll just make

a special method in MyStack named CheckInvariant():

public void CheckInvariant()

{

if (!(nextIndex >= 0 &&
nextIndex < elements.Length))

{

throw new InvariantException(

"nextIndex out of range: " + nextIndex +

" for elements length " + elements.Length);

}

} M
y
S
ta

c
k
.c

s

Now a test method can call CheckInvariant() to ensure that

nothing has gone awry inside the guts of the stack class, with-

out having direct access to those same guts.5

using NUnit.Framework;

[TestFixture]

public class MyStackTest

{

[Test]

public void Empty()

{

MyStack stack = new MyStack();

stack.CheckInvariant();

stack.Push("sample");

stack.CheckInvariant();

// Popping last element ok

5You’d normally use an InvalidOperationException, but in this case

we want to reinforce the invariant concept by using a custom exception.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=78

REFERENCE 79

Assert.That(
stack.Pop(),

Is.EqualTo("sample")

);

stack.CheckInvariant();

// Delete from empty stack

stack.Delete(1);

stack.CheckInvariant();

}

} M
y
S
ta

c
k
Te

st
.c

s

When you run this test, you’ll quickly see that we need to add

some range checking!

TestCase ’MyStackTest.Empty’ failed: InvariantException

nextIndex out of range: -1 for stack length 100

mystack.cs(34,0): at MyStack.CheckInvariant()

mystacktest.cs(20,0): at MyStackTest.Empty()

It’s much easier to find and fix this sort of error here in a sim-

ple testing environment instead of buried in a real application.

Almost any indexing concept (whether it’s a genuine integer

index or not) should be extensively tested. Here are a few

ideas to get you started:

• Start and End index have the same value

• First is greater than Last

• Index is negative

• Index is greater than allowed

• Count doesn’t match actual number of items

• . . .

5.4 Reference

What things does your method reference that are outside the COR R ECT

scope of the method itself? Any external dependencies? What

state does the class have to be in? What other conditions

must exist in order for the method to work?

For example, a method in a web application to display a cus-

tomer’s account history might require that the customer is

first logged on. The method Pop() for a stack requires a non-

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=79

REFERENCE 80

empty stack. Shifting the transmission in your car to Park

from Drive requires that the car is stopped.

If you have to make assumptions about the state of the class

and the state of other objects or the global application, then

you need to test your code to make sure that it is well-behaved

if those conditions are not met. For example, the code for

the microprocessor-controlled transmission might have unit

tests that check for that particular condition: the state of the

transmission (whether it can shift into Park or not) depends

on the state of the car (is it in motion or stopped).

[Test]

public void JamItIntoPark()

{
transmission.Shift(DRIVE);

car.AccelerateTo(35);

Assert.That(
transmission.CurrentGear,

Is.EqualTo(DRIVE)

);

// should silently ignore

transmission.Shift(PARK);

Assert.That(
transmission.CurrentGear,

Is.EqualTo(DRIVE)

);

car.AccelerateTo(0); // i.e., stop

car.BrakeToStop();

// should work now
transmission.Shift(PARK);

Assert.That(

transmission.CurrentGear,

Is.EqualTo(PARK)

);

}

The preconditions for a given method specify what state the

world must be in for this method to run. In this case, the pre-

condition for putting the transmission in park is that the car’s

engine (a separate component elsewhere in the application’s

world) must be at a stop. That’s a documented requirement

for the method, so we want to make sure that the method

will behave gracefully (in this particular case, just ignore the

request silently) in case the precondition is not met.

At the end of the method, postconditions are those things that

you guarantee your method will make happen. Direct results

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=80

EXISTENCE 81

returned by the method are one obvious thing to check, but if

the method has any side-effects then you need to check those

as well. In this case, applying the brakes has the side effect

of stopping the car.

Some languages even have built-in support for preconditions

and postconditions; interested readers might want to read

about the original Eiffel in Object-Oriented Software Construc-

tion [Mey97], or take a look at nContract,6 which can add

similar capabilities to C#.7

5.5 Existence

A large number of potential bugs can be discovered by asking CORR E CT

the key question “does some given thing exist?”.

For any value you are passed in or maintain, ask yourself

what would happen to the method if the value didn’t exist—if

it were null, or blank, or zero, or an empty string, or an empty

collection.

Many C# library methods will throw an exception of some sort

when faced with non-existent data. The problem is that it’s

hard to debug a generic runtime exception thrown from the

depths of some library. But a specific exception that reports

“Age isn’t set” makes tracking down the problem much easier.

Most methods will blow up if expected data is not available,

and that’s probably not what you want them to do. So you

test for the condition—see what happens if you get a null in-

stead of a CustomerRecord because some search failed. See

what happens if the file doesn’t exist, or if the network is un-

available.

Ah, yes: things in the environment can wink out of existence

as well—networks, files’ URLs, license keys, users, printers,

permissions that had been fine last time you checked—you

name it. All of these things may not exist when you expect

6http://puzzleware.net/nContract/nContract.html
7There are other efforts for other languages as well, such as

http://dbc.rubyforge.org for C and http://icontract2.org for Java.

http://puzzleware.net/nContract/nContract.html
http://dbc.rubyforge.org
http://icontract2.org
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=81

CARDINALITY 82

them to, so be sure to test with plenty of nulls, zeros, empty

strings and other nihilist trappings.

Make sure your method can stand up to everything which,

funnily enough, includes nothing.

5.6 Cardinality

Cardinality has nothing to do with either highly-placed reli- CORRE C T

gious figures or small red birds, but instead with counting.

Computer programmers (your humble authors included) are

really bad at counting, especially past 10 when the fingers

can no longer assist us. For instance, answer the following

question quickly, off the top of your head, without benefit of

fingers, paper, or UML:

If you’ve got 12 feet of lawn that you want to fence,

and each section of fencing is 3 feet wide, how many

fence posts do you need?

If you’re like most of us, you probably answered “4” without

thinking too hard about it. Pity is, that’s wrong—you need five

fence posts as shown in Figure 5.1 on page 84. This model,

and the subsequent common errors, come up so often that

they are graced with the name “fence post errors.”

It’s one of many ways you can end up being “off by one;” an

occasionally fatal condition that afflicts all programmers from

time to time. So you need to think about ways to test how

well your method counts, and check to see just how many of

a thing you may have.

It’s a related problem to Existence, but now you want to make

sure you have exactly as many as you need, or that you’ve

made exactly as many as needed. In most cases, the count of

some set of values is only interesting in these three cases:

1. Zero

2. One

3. More than one

It’s called the “0–1–n Rule,” and it’s based on the premise that

if you can handle more than one of something, you can prob-

ably handle 10, 20, or 1,000 just as easily. Most of the time

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=82

CARDINALITY 83

that’s true, so many of our tests for cardinality are concerned

with whether we have 2 or more of something. Of course there

are situations where an exact count makes a difference—10

might be important to you, or 260. (Why 260? That’s the

defined value for MAX_PATH in windows.h, and so turns out

to be a good boundary condition for finding string truncation

and buffer overflow issues in underlying native code.)

Suppose you are maintaining a list of the Top-Ten food items

ordered in a pancake house. Every time an order is taken, you

have to adjust the top-ten list. You also provide the current

top-ten list as a real-time data feed to the pancake boss’s PDA.

What sort of things might you want to test for?

• Can you produce a report when there aren’t yet ten items

in the list?

• Can you produce a report when there are no items on

the list?

• Can you produce a report when there is only one item on

the list?

• Can you add an item when there aren’t yet ten items in

the list (but more than one)?

• Can you add an item when there is only one item on the

list?

• Can you add an item when there are already ten items

on the list?

• What if there aren’t ten items on the menu?

• What if there are no items on the menu?

Having gone through all that, the boss now changes his mind

and wants a top-twenty list instead. What do you have to

change?

The correct answer is “one line,” something like the following:

public MaxEntries {

get { return 20; }

}

Now, when the boss gets overwhelmed and pleads with you to

change this to be a top-five report (his PDA is pretty small, af-

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=83

TIME 84

12 feet

3 feet
 3 feet
 3 feet
 3 feet

1
 5
4
3
2

Figure 5.1: A Set of Fence posts

ter all), you can go back and change this one number. The test

should automatically follow suit, because it uses the same

property.

So in the end, the tests concentrate on boundary conditions

of 0, 1, and n, where n can—and will—change as the business

demands.

5.7 Time

The last boundary condition in the CORRECT acronym is CORREC T

Time. There are several aspects to time you need to keep

in mind:

• Relative time (ordering in time)

• Absolute time (elapsed and wall clock)

• Concurrency issues

Some interfaces are inherently stateful; you expect that Lo-

gin() will be called before Logout(), that PrepareState-

ment() is called before ExecuteStatement(), Connect() be-

fore Read() which is before Close(), and so on.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=84

TIME 85

What happens if those methods are called out of order? Maybe

you should try calling methods out of the expected order. Try

skipping the first, last and middle of a sequence to find these

kind of temporal dependencies. Just as order of data may

have mattered to you in the earlier examples (as we described

in “Ordering” on page 74), now it’s the order of the calling

sequence of methods.

Relative time might also include issues of timeouts in the

code: how long your method is willing to wait for some ephem-

eral resource to become available. As we’ll discuss shortly,

you’ll want to exercise possible error conditions in your code,

including things such as timeouts. Maybe you’ve got con-

ditions that aren’t guarded by timeouts—can you think of a

situation where the code might get “stuck” waiting forever for

something that might not happen?

This leads us to issues of elapsed time. What if something you

are waiting for takes “too much” time? What if your method

takes too much time to return to the caller?

Then there’s the actual wall clock time to consider. Most of

the time, this makes no difference whatsoever to code. But

every now and then, time of day will matter, perhaps in subtle

ways. Here’s a quick statement, is it true or false: every day

of the year is 24 hours long?8

The answer is “it depends.” In UTC (Universal Coordinated

Time, the modern version of Greenwich Mean Time, or GMT),

the answer is yes. In areas of the world that do not observe

Daylight Savings Time (DST), the answer is yes. In most of

the U.S. (which does observe DST), the answer is no. In April,

you’ll have a day with 23 hours (spring forward) and in Oc-

tober you’ll have a day with 25 (fall back). This means that

arithmetic won’t always work as you expect; 1:45AM plus 30

minutes might equal 1:15, for instance.

But you’ve tested any time-sensitive code on those boundary

days, right? For locations that honor DST and for those that

do not?

8Ignoring leap seconds for now, we’re just talking about whole hours.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=85

TRY IT YOURSELF 86

Oh, and don’t assume that any underlying library handles

these issues correctly on your behalf. Unfortunately, when it

comes to time, there’s a lot of broken code out there. And leap

seconds do make a difference.

Finally, one of the most insidious problems brought about

by time occurs in the context of concurrency and synchro-

nized access issues. It would take an entire book to cover

designing, implementing, and debugging multi-threaded, con-

current programs, so we won’t take the time now to go into de-

tails, except to point out that most code you write in most lan-

guages today will be run in a multi-threaded, multi-processor

environment (see the section in on page 187 for an interesting

“Gotcha” in C#).

So ask yourself, what will happen if multiple threads use this

same object at the same time? Are there global or instance-

level data or methods that need to be synchronized? How

about external access to files or hardware? Be sure to add

the lock keyword to any property or method that needs it,

and try firing off multiple threads as part of your test.

5.8 Try It Yourself

Now that we’ve covered the Right-BICEP and CORRECT way

to come up with tests, it’s your turn to try.

For each of the following examples and scenarios, write down

as many possible unit tests as you can think of.

Exercises

1. A simple stack class. Push String objects onto the stack, Answer
on 196and Pop them off according to normal stack semantics. This

class provides the following methods:

using System;

public interface StackExercise {

/// <summary>

/// Return and remove the most recent item from

/// the top of the stack.

/// </summary>

/// <exception cref="StackEmptyException">

/// Throws exception if the stack is empty.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=86

TRY IT YOURSELF 87

/// </exception>

String Pop();

/// <summary>

/// Add an item to the top of the stack.

/// </summary>

/// <param name="item">A String to push

/// on the stack</param>

void Push(String item);

/// <summary>

/// Return but do not remove the most recent
/// item from the top of the stack.

/// </summary>

/// <exception cref="StackEmptyException">

/// Throws exception if the stack is empty.

/// </exception>

String Top();

/// <summary>

/// Returns true if the stack is empty.

/// </summary>

bool IsEmpty();

} S
ta

c
k
E
xe

rc
is

e
.c

s

Here are some hints to get you started: what is likely to break?

How should the stack behave when it is first initialized? After

it’s been used for a while? Does it really do what it claims to

do?

2. A shopping cart. This class lets you add, delete, and count Answer
on 197the items in a shopping cart.

What sort of boundary conditions might come up? Are there

any implicit restrictions on what you can delete? Are there any

interesting issues if the cart is empty?

public interface ShoppingCart {

/// <summary>

/// Add this many of this item to the

/// shopping cart.

/// </summary>

/// <exception cref="ArgumentOutOfRangeException">

/// </exception>

void AddItems(Item anItem, int quantity);

/// <summary>

/// Delete this many of this item from the

/// shopping cart

/// </summary>

/// <exception cref="ArgumentOutOfRangeException">

/// </exception>

/// <exception cref="NoSuchItemException">

/// </exception>

void DeleteItems(Item anItem, int quantity);

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=87

TRY IT YOURSELF 88

/// <summary>

/// Count of all items in the cart

/// (that is, all items x qty each)

/// </summary>

int ItemCount { get; }

/// Return iterator of all items
IEnumerable GetEnumerator();

} S
h

o
p

p
in

g
C

a
rt

.c
s

3. A fax scheduler. This code will send faxes from a specified file Answer
on 198name to a U.S. phone number. There is a validation require-

ment; a U.S. phone number with area code must be of the form

xnn-nnn-nnnn, where x must be a digit in the range [2..9] and

n can be [0..9]. The following blocks are reserved and are not

currently valid area codes: x11, x9n, 37n, 96n.

The method’s signature is:

///
/// Send the named file as a fax to the
/// given phone number.

/// <exception cref="MissingOrBadFileException">

/// </exception>

/// <exception cref="PhoneFormatException">

/// </exception>

/// <exception cref="PhoneAreaCodeException">

/// </exception>

public bool SendFax(String phone, String filename)

Given these requirements, what tests for boundary conditions

can you think of?

4. An automatic sewing machine that does embroidery. The Answer
on 199class that controls it takes a few basic commands. The co-

ordinates (0,0) represent the lower-left corner of the machine.

x and y increase as you move toward the upper-right corner,

whose coordinates are x = TableSize.Width - 1 and y = Ta-

bleSize.Height - 1.

Coordinates are specified in fractions of centimeters.

public void MoveTo(double x, double y);

public void SewTo(double x, double y);

public void SetWorkpieceSize(double width,

double height);

public Size WorkpieceSize { get; }

public Size TableSize { get; }

There are some real-world constraints that might be interest-

ing: you can’t sew thin air, of course, and you can’t sew a

workpiece bigger than the machine.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=88

TRY IT YOURSELF 89

Given these requirements, what boundary conditions can you

think of?

5. Audio/Video Editing Transport. A class that provides meth- Answer
on 200ods to control a VCR or tape deck. There’s the notion of a

“current position” that lies somewhere between the beginning

of tape (BOT) and the end of tape (EOT).

You can ask for the current position and move from there to

another given position. Fast-forward moves from current posi-

tion toward EOT by some amount. Rewind moves from current

position toward BOT by some amount.

When tapes are first loaded, they are positioned at BOT auto-

matically.

using System;

public interface AVTransport {

/// Move the current position ahead by this many

/// seconds. Fast-forwarding past end-of-tape

/// leaves the position at end-of-tape

void FastForward(double seconds);

/// Move the current position backwards by this

/// many seconds. Rewinding past zero leaves

/// the position at zero

void Rewind(double seconds);

/// Return current time position in seconds

double CurrentTimePosition();

/// Mark the current time position with label

void MarkTimePosition(String name);

/// Change the current position to the one

/// associated with the marked name

void GotoMark(String name);

} A
V

Tr
a

n
sp

o
rt

.c
s

6. Audio/Video Editing Transport, Release 2.0. As above, but Answer
on 201now you can position in seconds, minutes, or frames (there are

exactly 30 frames per second in this example), and you can

move relative to the beginning or the end.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=89

Chapter 6

Using Mock Objects

The objective of unit testing is to exercise just one behav-

ior at a time, but what happens when the method contain-

ing that behavior depends on other things—hard-to-control

things such as the network, or a database, or even special-

ized hardware?

What if our code depends on other parts of the system—maybe

even many other parts of the system? If you’re not careful,

you might find yourself writing tests that end up (directly or

indirectly) initializing nearly every system component just to

give the tests enough context in which to run. Not only is this

time consuming, it also introduces a ridiculous amount of

coupling into the testing process: someone goes and changes

an interface or a database table, and suddenly the setup code

for our poor little unit test dies mysteriously. With this kind of

coupling, sometimes simply adding a new test can cause other

tests to fail. Even the best-intentioned developers will become

discouraged after this happens a few times, and eventually

may abandon all testing. But there are techniques we can

use to help.

In movie and television production, crews will often use stand-

ins or doubles for the real actors. In particular, while the

crews are setting up the lights and camera angles, they’ll

use lighting doubles: inexpensive, unimportant people who

are about the same height and complexion as the expensive,

important actors lounging safely in their luxurious trailers.

CHAPTER 6. USING MOCK OBJECTS 91

The crew then tests their setup with the lighting doubles,

measuring the distance from the camera to the stand-in’s

nose, adjusting the lighting until there are no unwanted shad-

ows, and so on, while the obedient stand-in just stands there

and doesn’t whine or complain about “lacking motivation” for

their character in this scene.

So what we’re going to do in unit testing is similar to the use

of lighting doubles in the movies: we’ll use a cheap stand-in

that is kind of close to the real thing, at least superficially, but

that will be easier to work with for our nefarious unit testing

purposes.

Fortunately, there’s a testing pattern that can help: mock ob-

jects. A mock object is simply a testing replacement for a

real-world object. There are a number of situations that come

up where mock objects can help us. Tim Mackinnon [MFC01]

offers the following list:

• The real object has nondeterministic behavior (it pro-

duces unpredictable results, like a stock-market quote

feed.)

• The real object is difficult to set up, like requiring a cer-

tain file system, database, or network environment.

• The real object has behavior that is hard to trigger (for

example, a network error).

• The real object is slow.

• The real object has (or is) a user interface.

• The test needs to ask the real object about how it was

used (for example, a test might need to confirm that a

callback function was actually called).

• The real object does not yet exist (a common problem

when interfacing with other teams or new hardware sys-

tems).

Using mock objects, we can get around all of these problems.

The three key steps to using mock objects for testing are:

1. Use an interface to describe the relevant methods on the

object

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=91

STUBS 92

2. Implement the interface for production code

3. Implement the interface in a mock object for testing

The code under test only ever refers to the object by its inter-

face or base class, so it can remain blissfully ignorant as to

whether it is using the real object or the mock. Sometimes

there’s a simpler solution to getting on with our testing, so

let’s explore that first.

6.1 Stubs

What we need to do is stub out, or fake, all those uncoop-

erative parts of the real world and replace them with more

complicit allies—our own version of “lighting doubles.” For ex-

ample, stubs allow us to fake our interaction with a database

or the filesystem.

In many cases, stubs just implement an interface and return

dummy values for the methods in said interface.1 In even

simpler cases, all the implemented methods in the stub just

throw a NotImplementedException.2

A common scenario is when there is a class that encapsulates

database access, but we don’t want to actually configure and

populate a database to run simple tests.

public class MySqlCustomerRepository

{

public string FindBy(long id)

{
xxxx xx xxxxx

}

}

First, we extract an interface for the methods we need to stub

and apply that interface to the class we want to mock:

public interface CustomerRepository

{

string FindBy(long id);

}

1Note that while you can also derive from an abstract class, interfaces are

preferred.[?]
2Most IDEs will fill in this exception for you when told to automatically

implement the methods for an interface.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=92

STUBS 93

public class MySqlCustomerRepository : CustomerRepository

{

public string FindBy(long id)

{
xxxx xx xxxxx

}

}

Then we can return the dummy value that we think will evoke

the behaviour we want from the ProductAdoptionService.

public class StubCustomerRepository : CustomerRepository

{

public string FindBy(long id)

{

return string.Empty;

}

}

We put the code for this stub class in the same file as the test

fixture class that will be using it, until we need to move it to a

more general area where other test fixture classes can access

it. Then we plug in the stub to our unit test like so:

namespace WebCRM.Test.ProductAdoptionTest

{

[TestFixture]

public class NoDataFixture

{

[Test]

public void OverallRateIsZero()

{

StubCustomerRepository customerRepository =

new StubCustomerRepository();

ProductAdoptionService service =

new ProductAdoptionService(customerRepository);

Assert.That(service.GetPercentage(), Is.EqualTo(0));

}

}
}

If we’re lucky, our test might now pass and we didn’t have

to touch a database. In fact, this test could have been writ-

ten before there was ever a schema design, database vendor

debate, or anything else. By programming to interfaces, we

were able to plug in what we needed without depending on

politicking or other non-coding activities that can slow down

a project. Note that we not only get to verify the code being

tested produces the results that we want, but we also get to

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=93

FAKES 94

verify that it interacts with the stubbed class in the way we

expect. More on that later.

6.2 Fakes

Sometimes we need to do more than return dummy values to

get at the code we’re trying to test. What if we have files on

the filesystem that conform to a certain format and we want

to test that we’re parsing them correctly?

public class DumpFileParser

{
FileStream stream;

public DumpFileParser(string fileName)

{
stream = File.Open(fileName);

}

xxxx xxx xxxx
}

The code above requires a real file on the file system in order

to be tested. This can put an unnecessary filesystem layout

burden on the person running the tests, and the disk I/O

will slow down the tests.3 What can we do in a situation like

this to make it easier to test? The class actually discards

the supplied filename after the constructor and just operates

on the resulting stream. We’ll look at a suboptimal way of

making it more testable, then a more optimal way. It’s good

to understand what the evils in the world are so that we don’t

accidentally end up evoking any of them.

What if we used #define to tell the code when we were test-

ing, then it wouldn’t use the filesystem.

public class DumpFileParser

{
FileStream stream;

public DumpFileParser(string fileName)

{

#if TESTING
stream = new MemoryStream();

#else
stream = File.Open(fileName);

#endif

3This doesn’t seem like a big deal, but little slowdowns like this add up

quickly.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=94

FAKES 95

}

xxxx xxx xxxx
}

MemoryStream is a nifty class in the .NET class library that

allows us to make, as you may have guessed, an in-memory

stream. Now we have a real Stream-derived object that the

class can interact with, and it doesn’t touch the filesystem.

Before we get too far ahead of ourselves, though, we have to

realise that an empty stream has limitations. First, an empty

stream doesn’t really help us if we need to read data from

that stream. Many of the tests we write will probably want to

supply different data via the stream to make sure the parser

behaves correctly. We could figure out various ways to get

some test data into place in this scenario, but this approach

works around the fact that the code wants the stream to be

parameterized; our attempt to test this code has illuminated

this. Third, #if statements strewn throughout the code for

testing purposes are difficult to maintain. And, in our opinion,

they’re ugly as well.

It might also be tempting to just add an empty constructor to

eliminate the need for any of this deep thinking. While this

would “work” in a very narrow sense, there’s a good reason

there wasn’t an empty constructor in the first place: without

the Stream being created, the object isn’t in a valid state. In

this case, invalid state means a probable NullReferenceEx-

ception whenever we try to do anything with the object. Ob-

jects being in a valid state after construction is a core object-

oriented design principle, and ignoring it is not the right thing

to do in this case. Tests can help drive improvements to the

code’s design, but this particular example isn’t one of them.

Now that we’ve discussed what won’t work, what will work?

What if we shifted the responsibility of actually getting the

FileStream to the clients and passed in a FileStream in-

stead? Doing this transformation would resolve the design

feedback we’re getting from testing this in the first place.

public class DumpFileParser

{
Stream stream;

public DumpFileParser(Stream dumpStream)

{

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=95

FAKES 96

this.stream = dumpStream;

}

xxxx xxx xxxx
}

This isn’t bad at all. Now the consumers of the class, includ-

ing the tests, could perform the File.Open() and pass in a

FileStream. It may seem like we’re just moving the problem

around, but we needed to do that to get to the next step. The

next step is to make our code a little more shy; specifically,

to make it more liberal in what it will accept. In this case, we

aren’t using any methods specific to FileStream, so we can

actually accept the base class, Stream, instead.

What does that get us? Well, in our tests we can now use the

spiffy MemoryStream class, like so:

[TestFixture]

public class DumpFileParserTest

{

private StreamWriter writer;

private DumpFileParser parser;

private MemoryStream stream;

[SetUp]

public void SetUp()

{
stream = new MemoryStream();

writer = new StreamWriter(stream);

}

[Test]

public void EmptyLine()

{

writer.WriteLine(string.Empty);

parser = new Parser(stream);

Assert.That(xxxx, xxxx);

}

}

Presto! An instant pseudo-text-file that you can also use to

write binary data. Since this operates in-memory, you won’t

incur the performance penalty of disk I/O.4 Now we can do the

testing we need, quickly and conveniently. A nice side effect

is that our code is shyer, yielding a more flexible design that

is easier to reuse. One could say that changing the parameter

to a Stream was a change strictly for the sake of testing and

4Note that this technique works just as well with Sockets and other

stream-based I/O as well.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=96

FAKES 97

that observation would be somewhat correct. The other side

of the story is that by not programming against a concrete

implementation, the code now has a more flexible design. We

were led to this by refactoring a very little bit to make things

easier to test. This kind of design feedback is the real magic

of unit testing, but this is only one simple example.

Faking collaberators

The DumpFileParser class we were just working on does some

pretty complicated collation of the data in the stream. If an-

other class depends on DumpFileParser, we don’t want to

make the entire fake stream necessary for it to produce the

data we’re trying to test our other class against. Besides the

fact that it would be really tedious, it adds a whole new di-

mension of coupling and maintenance to the test code. If

we used a real DumpFileParser while testing a collaberat-

ing class, we’re increasing the work we have to do if Dump-

FileParser changes or gets removed.

That doesn’t sound very pragmatic, so how do we decou-

ple DumpFileParser from the tests of a class that requires

a DumpFileParser? It’s actually very similar to our initial ex-

ample – we need to abstract things up a level, then we can

supply a variation on DumpFileParser that returns whatever

dummy values we need for the purpose of testing the other

object. This is known in some circles as creating a fake, and

in other circles as a static mock. Let’s look at some code.

public class Analyzer

{

private DumpFileParser parser;

private List<string> reportItems;

public Analyzer(DumpFileParser parser)

{

this.parser = parser;

}

public bool ExpectationsMet

{
get

{
return parser.ReportItems.Count == reportItems.Count;

}
}

public byte[] GetNextInstruction()

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=97

FAKES 98

{
xxxxxxxxx

}
}

If we wanted to test the ExpectationsMet property, the Re-

portItems property on parser will need to be under our con-

trol so we can make it return what we want. One way would

be to make the ReportItems property on DumpFileParser

virtual. We could then subclass and override it for our test-

ing purposes, and pass an instance of said subclass into the

constructor for Analyzer. While that would work, there’s a

better way that yields a more flexible, and interface-oriented,

design: extract an interface called Parsable that contains,

for the time being, a declaration for the ReportItems property

getter.

public interface Parsable

{

List<string> ReportItems

{
get;

}
}

Then, we can make DumpFileParser implement the Parsable

interface. Next, we change the Analyzer constructor’s pa-

rameter from DumpFileParser to Parsable. Last, we change

the parser field in Analyzer from DumpFileParser concrete

class to be the Parsable interface that DumpFileParser now

implements. When we try to compile, the compiler might

tell us that we’re using some methods not defined on the

Parsable interface. We’ll need to add those methods to the

interface as well.

public DumpFileParser : Parsable

{
xxxxxxx

}

public class Analyzer

{

private Parsable parser;

private List<string> reportItems;

public Analyzer(Parsable parser)

{

this.parser = parser;

}

xxxxxxxx
}

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=98

FAKES 99

None of the existing consumers of Analyzer have to change,

and yet, we have just made Analyzer easier to test and reuse.

If in the future we wanted to add the ability to parse another

file format, Analyzer itself wouldn’t have to change to acco-

modate the extra functionality—only the consumers would by

passing in a new class that implements the Parsable inter-

face.

This is a good example of the advantage of interface-based

design, but the point worth mentioning again is that we ar-

rived at this better design by refactoring toward testability.

Besides being more testable and reusable, it also means that

we don’t need to wait for another set of programmers to fin-

ish implementing the concrete class that our class might be

collaborating with. We can fully unit test our class by faking

the collaberator’s interface, which generally makes integrat-

ing with the concrete classes developed by others (or even our

future selves) significantly less painful.5

Fakes are great, especially when they’re simple, but it’s also

easy to outgrow them; like when we need to do more than re-

turn a single value, for instance. At some point, we want to re-

turn values in a certain order each time a method is called. To

accomplish this with a fake, we would need to track a Stack

of return values for a given method.

public FakeParser : Parsable

{

private Stack<byte[]> bytesToReturn;

public Stack<byte[]> BytesToReturn

{

get { return bytesToReturn; }

set { bytesToReturn = value; }

}

public Boolean ExpectationsMet

{

get { return false; }

}

public Byte[] GetNextInstruction()

{
return BytesToReturn.Pop();

}

}

5In many cases, the usually pandemonious step of integration just works.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=99

MOCK OBJECTS 100

While this would work and is a clever way to make a pro-

grammable fake, we risk repeating ourselves because we

would end up doing this for most methods on our fake. It also

gets a little more hairy when we have to make them throw spe-

cific exceptions at certain points to test failure modes. Surely,

there must be a better way.6

6.3 Mock Objects

In the old days, just having the ability to call subroutines was

a great advance. Then libraries of code became popular—

everything had to be library. Nowadays, libraries aren’t good

enough. You’ve got to have a framework to be taken seriously.

In the case of .NET, there are several alternative mock ob-

ject frameworks to choose from (a good list can be found

at http://www.mockobjects.com). NUnit includes its own

built-in framework that the NUnit team uses to test NUnit

itself. NUnit’s mock framework doesn’t provide all of the fea-

tures of some other frameworks, so we’ll look at a few other

frameworks as well. But before we do, it’s worth noting that

because we’re in .NET’s CLR environment, this same frame-

work can be used to mock objects for any code written in

any language compliant with the Common Language Specifi-

cation.

NUnit Mocks

When you think about it, there’s really not too much to a mock

object: it’s simply an object that implements a particular in-

terface, returns values we want it to return, and checks that it

was used in a certain way. As a result, the basic frameworks

for creating mock objects are also simple.

In the previous section, we saw what we would have to

go through to have our fake be somewhat programmable

and return multiple values for a given method call. Here

is how we would do this using NUnit’s mock framework.

6Never call us Shirley.

http://www.mockobjects.com
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=100

MOCK OBJECTS 101

Note that to compile this code, we’ll have to add a refer-

ence to the nunit.mocks.dll assembly in addition to the

nunit.framework.dll reference.

using NUnit.Framework;

using NUnit.Framework.SyntaxHelpers;

using NUnit.Mocks;

[TestFixture]

public class AnalyzerTest

{
Analyzer analyzer;

Parsable parser;

[Test]

public void NoBytes()

{
DynamicMock controller =

new DynamicMock(typeof(Parsable));

parser = controller.MockInstance as Parsable;

analyzer = new Analyzer(parser);

controller.ExpectAndReturn(

"GetNextInstruction",// method name

new byte[] {}, // return value

null // expected arguments

);

controller.ExpectAndReturn(

"get_ExpectedReportItems",

new List<string>(),

null
);

analyzer.Run();

controller.Verify(); // fails the test if expecta-
tions are unmet

Assert.That(analyzer.ReportItems, Is.Empty);

}
}

Mock object frameworks make it very easy to set multi-

ple method call expectations, with or without accompany-

ing dummy values that should be returned, with or without

throwing exceptions, etc. In the code above, we first instan-

tiate a DynamicMock object, passing the Parsable interface’s

type into the constructor. We can only create a DynamicMock

for interfaces or classes that derive from MarshalByRefOb-

ject. We highly recommend extracting interfaces whenever

possible, not only for the reasons previously discussed in this

chapter, but also because of the complex implications of using

MarshalByRefObject.[Ric06]

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=101

MOCK OBJECTS 102

There’ll be times when we need to test something that uses an

existing interface and there are no pre-written mock objects

lying around. Often, we can just jump right on in and create

a new mock object. But what if the interface that we’re mock-

ing is enormous, with dozens of methods and accessors? That

could mean a lot of work producing a mock object that imple-

ments the interface. This is particularly galling if we only need

one or two methods from the interface to run our tests, and

we can’t refactor to break up the interface for some reason.

This is where dynamic mock objects come in. They let us

create an object that responds as if it implemented a full in-

terface, but in reality it is totally generic. You only need to tell

this object how to respond to the method calls that our code

uses. This can represent a considerable saving in time. It’ll

also give you less code to maintain in the future.

The dynamic mock packages operate by creating proxy objects

in the underlying implementation. These are objects that are

designed to stand in for their real-world counterparts. In the

dynamic mock object context, this means that we can use

a proxy in place of a real object in our tests. However, we

still need to be able to control this generated proxy object—we

need to be able to tell it how to respond. This is where the

controller comes in.

The controller is in charge of a dynamic mock object. You use

the controller to create an instance of the mock and to tell the

mock what to do. Sometimes the controller is told directly,

like in NUnit’s mocks, sometimes indirectly as in the NMock2

framework, which we’ll discuss later in the chapter.

Once the mock is created, we pass it in to the real object that

we are testing the interaction with. If our interaction testing

wasn’t constrained to the Run() method, we would program

the mock before we passed it into the constructor for Ana-

lyzer. Since we’re focusing on testing the interaction after

Run() is called, we start programming it with our expecta-

tions right before the call to run, since this expresses our

intentions clearly. To put it another way, we don’t want to

program all the expectations for our mock in a big clump that

is difficult to read and understand. In the code above, the

expectations we set are:

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=102

MOCK OBJECTS 103

1. The method name

2. The value, if any, that will be returned when the mocked

method is called

3. The specific arguments, if any, we expect the mocked

method to be called with.

After creating the mock, we tell it to expect a call to Get-

NextInstruction(), and to return an empty byte array.

The final null parameter indicates that there are no specific

method argument expectations. In this case, the method in

question doesn’t have any parameters, but we can also sup-

ply null when we just don’t care. In our experience, checking

specific arguments supplied to the mocked method is usually

not necessary because that level of detail usually isn’t neces-

sary to express the intention of the interaction we’re testing.

Next, we tell the mock to expect a call to the getter for the Ex-

pectedReportItems property. Note that we had to prepend

“get_” to the property name.7 In the context of this applica-

tion, a parser having no bytes also means it should also not

have any expected report items.

We then get our mock object via the MockInstance property.

Because NUnit’s mock framework doesn’t take advantage of

generics, we have to cast it—hence the use of the as operator.

At that point, we can treat that instance like the real object

as long as we use it only in the way we programmed it. One

way to think about it is the framework provides a kind of API-

level record-and-playback mechanism. If we didn’t “record”

the method calls, the mock can’t play them back.

By default, the DynamicMock operates fairly loosely. Just by

telling the mock to expect the method call once, it will happily

do whatever we told it to do even if the method is called mul-

tiple times. It also doesn’t care about the order in which the

expected methods are called by default. While we sometimes

don’t care about that level of detail, and that makes this de-

fault behaviour quite nice, it’s a good idea to be vigilant when

practical.

7For more details on the inner workings of properties, see [Ric06].

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=103

MOCK OBJECTS 104

When we want that vigilance, we can set the Strict property

on the mock to true. One of the things the strict flag does

is that the mock will fail the test immediately if something

happens that the mock wasn’t expecting. If we’re not using

strict mode, then we need to ask the mock to Verify() that

all the expectations were met. The Verify method acts as a

kind of assertion. If anything we expected didn’t happen, the

verification will fail. Since the verification generally happens

at the end of the test, it can sometimes be difficult to track

down where things went wrong. This is another reason to

prefer the strict mode on the mock, if practical.

Note that the ExpectAndReturn methods take the method

name as a string parameter. This introduces a gotcha where

if you rename the method in the code, but not in the mock

expectation, the mock will throw an exception. Other frame-

works, which we’ll discuss later in this chapter, improve upon

this limitation.

Some of the other expectations we can set using NUnit’s Dy-

namicMock include:

• ExpectNoCall(string methodName), which will cause

verification to fail if the method supplied is called. If the

mock is in strict mode, the test will fail immediately if

specified method is called.

• ExpectAndThrow(string methodName, Exception

exception, params object[] args), which operates

the same as ExpectAndReturn, except the exception

specified is thrown. This is great for making sure

your exception handling interaction between classes is

rock-solid, and stays that way.

• SetReturnValue(string methodName, object re-

turnValue), which will always return the value

specified no matter how many times the method in

question is called. We generally don’t recommend using

this, as it can cover up the very interaction feedback

that mocks are so good at giving us.

For more information check out NUnit’s documentation or

just explore a bit with a method-completing code editor.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=104

MOCK OBJECTS 105

NMock2 Framework

NMock2,8 which is based on jMock for Java,9 inspired NUnit’s

new style of constraint-based assertions. It is meant to pro-

vide a more concise and easily readable syntax in contrast to

other mock frameworks. Since we use unit tests as documen-

tation for our code, it’s important that the configuration of our

mocks be easy to read and understand. In that vein, NMock’s

syntax reads from left to right, albeit with a syntax that might

look a bit strange at first.

using NUnit.Framework;

using NMock2;

[TestFixture]

public class AnalyzerTest

{

Analyzer analyzer;

Parsable parser;

Mockery mockery;

[Test]

public void NoBytes()

{

mockery = new Mockery();

parser = mocks.NewMock<Parsable>();

analyzer = new Analyzer(parser);

Expect.Once.On(parser)

.Method("GetNextInstruction")

.Will(Return.Value(new byte[] {}));

Expect.Once.On(parser)

.GetProperty("ExpectedReportItems")

.Will(Return.Value(new List<string>()));

analyzer.Run();

mockery.VerifyAllExpectationsHaveBeenMet();

Assert.That(
analyzer.ReportItems,

new EmptyConstraint()

);

}
}

This code is equivelant to the code from the previous subsec-

tion that was written using NUnit’s mocks. First, we create a

Mockery object. Mockery acts as a factory for mock objects,10

via the NewMock<T>() generic method. Because it is a generic

8http://nmock.org
9http://jmock.org

10Mocks + Factory = Mockery, get it?

http://nmock.org
http://jmock.org
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=105

MOCK OBJECTS 106

method, whatever type we parameterize it with is the type it

will return. This allows us to avoid the casting we had to do

in NUnit’s mocks.11 Note that the use of a generic method is

a C# 2.0 feature, so NMock2 can’t be used on a project that

strictly uses an earlier C# version. The Mockery object also

keeps track of the expectations we are setting.

We then set up the expectations. Remember, we only program

the mock with the minimal number of expectations we need

to test the interaction triggered by the specific method. We

want this to read like a conversation between the mock and

the real object, from A to B and back again. We expect that,

only once, the parser’s GetNextInstruction method will be

called, and it will return an empty byte array. Under the

covers, the expectations are communicated to the Mockery

object, which created the Parser mock in the first place.

To our subjective eyes, NMock2 reads a bit more easily than

other frameworks. It allows us to focus on only the aspects

that we care about. On the other hand, NUnit’s mocks re-

quire us to always provide the arguments we are expecting;

we have to supply null to tell it we don’t have any argu-

ment expectations. In NMock2, we only add the argument

constraint matcher if we actually need it by adding .With(x)

to the chain. This extra flexibility seems small, but it adds up

to test code that is easier to maintain.

One major caveat to note is that we can no longer use NUnit’s

AssertionHelpers namespace, which gave us Is and Has,

amongst other nice things, because NMock2 also defines

classes with those names. We’re not using them in this ex-

ample, because they relate to argument matching. Because of

this conflict, we’re using new EmptyConstraint() instead of

the usual Is.Empty. We could also substitute in the classic-

style assertion, CollectionAssert.IsEmpty(). Hopefully

this namespace issue will be resolved in future versions so

we can use the advantages of both.

11The NUnit 2.4 team purposefully restrained themselves to only using C#

1.1 features so it could be more widely used.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=106

MOCK OBJECTS 107

Joe Asks. . .

How do I mock singletons?

With design patterns becoming popular, many
projects have various patterns implemented as part
of their design. One of the most commonly misunder-
stood patterns is the Singleton. Unfortunately, it is usu-
ally mis-implemented in such a way that introduces
global state, which in turn introduces a large amount
of temporal coupling, hidden dependencies, and ex-
tremely difficult debugging. Many times, a singleton
isn’t even necessary, but it can be a tempting way to
cheat through actually improving the design.

In the next section, we show how to test around a us-
age of DateTime.Now, which is a static global, just
like a singleton class can be. The key is to extract an
interface for the methods actually used by the con-
sumers of the singleton class, and then extract a pa-
rameter from the class or method that accepts the
interface for the singleton. From that point, you can
create a mock from the extracted interface and pass
in the mock via the parameter.

Even if you aren’t unit testing, this is the standard set of
refactorings for loosening the hangman’s knot of sin-
gletons that many projects get themselves into. Once
you see the real dependencies you have with the vis-
ibility of the extracted parameters, you’ll have the in-
formation for genuinely improving our design instead
of working around it. When applying this design feed-
back, you may find that the singleton is simply no
longer necessary.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=107

MOCK OBJECTS 108

RhinoMock

There’s a third option in the world of mock frameworks
that some of our reviewers asked us to mention, Rhi-
noMock.a RhinoMock primarily distinguishes itself by
not relying upon strings to specify the method that ex-
pectations will be set on. It is this simple feature that
makes it work more easily with code completion and
refactoring capabilities in modern IDEs.

Each framework has advantages and disadvan-
tages, which one you end up applying on your
project is a matter of preference and practicality. We
do encourage you to try a couple before settling,
though.

ahttp://www.ayende.com/projects/rhino-mocks.aspx

DotNetMock Framework

Some objects are difficult to set up mocks for, regardless of

the framework, due to the complexity and girth of their inter-

faces. ASP.NET and ADO.NET objects can be fairly difficult,

in particular. In these cases, a library of static mocks that

are engineered specifically for common unit testing scenarios

can come in handy. To meet this need, the DotNetMock12

framework is actually three things in one:

1. It’s a framework (not surprisingly), allowing us to create

mock objects in a structured way.

2. It contains a (small) set of predefined mock objects that

we can use out of the box to test our application.

3. Finally, it comes with a technology, dynamic mocks, that

let’s us construct mock objects without all that messy

coding.

We recommend using one of the aforementioned mock object

frameworks for standard mock program-activities, and Dot-

NetMock for when you need to mock one of the messier frame-

12http://dotnetmock.sourceforge.net

http://www.ayende.com/projects/rhino-mocks.aspx
http://dotnetmock.sourceforge.net
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=108

MOCK OBJECTS 109

work classes. As such, we’re only going to cover the library of

mocks that DotNetMock comes with.

Supplied Mock Objects

One of the nice things about using a standardized frame-

work for testing is that we can start to build a library of

standard mock objects and reuse these across projects. In

fact, in the open source world, you might even find that other

folks have mocked up the interfaces that you need and made

them freely available. The DotNetMock package comes with

a (small) number of these off-the-shelf mock object packages,

available in DotNetMock.Framework. While DotNetMock’s li-

brary of predefined mocks hasn’t been updated for .NET 2.0

at the time of this writing, it’s still very useful if you’re using

.NET 1.1 APIs. Here we’ll look at one of these, Data, which

implements many of the interfaces in .NET’s System.Data.

Let’s start by implementing more of our access controller. Af-

ter verifying that a password has been supplied, we’ll now go

to a database table and verify that a row exists giving this

user, identified with the given password, access to our re-

source.

using System;

using System.Data;

using System.Data.SqlClient;

public class AccessController1 {

private ILogger logger;

private String resource;

private IDbConnection conn;

public static readonly String CHECK_SQL =

"select count(*) from access where " +
"user=@user and password=@password " +

"and resource=@resource";

public AccessController1(String resource,

ILogger logger,

IDbConnection conn) {

this.logger = logger;

this.resource = resource;

this.conn = conn;

logger.SetName("AccessControl");

}

public bool CanAccess(String user, String password) {

logger.Log("Checking access for " + user +

" to " + resource);

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=109

MOCK OBJECTS 110

if (password == null || password.Length == 0) {

logger.Log("Missing password. Access denied");

return false;

}

IDbCommand cmd = conn.CreateCommand();

cmd.CommandText = CHECK_SQL;

cmd.Parameters.Add(

new SqlParameter("@user", user));

cmd.Parameters.Add(

new SqlParameter("@password", password));

cmd.Parameters.Add(

new SqlParameter("@resource", resource));

IDataReader rdr = cmd.ExecuteReader();

int rows = 0;

if (rdr.Read())

rows = rdr.GetInt32(0);

cmd.Dispose();

if (rows == 1) {
logger.Log("Access granted");
return true;

}

else {
logger.Log("Access denied");

return false;

}
}

} A
c

c
e

ss
C

o
n

tr
o

lle
r1

.c
s

The test code for this is somewhat more complicated than the

previous cases, mostly because we want to knit together all

the various objects used to access the database (the connec-

tion, the command, various parameters, and the reader that

returns the result). We also want to set up a reasonable set of

expectations to ensure that the underlying code is calling the

database layer correctly.

Line 1 using DotNetMock.Framework.Data;
- using NUnit.Framework;
- using NUnit.Framework.SyntaxHelpers;
- using System;
5

- [TestFixture]
- public class AnotherAccessControllerTest
- {
- [Test]

10 public void ValidUser()
- {
- MockLogger3 logger = new MockLogger3();
- logger.ExpectedName = "AccessControl";

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=110

MOCK OBJECTS 111

- logger.AddExpectedMsg(
15 "Checking access for dave to secrets");

- logger.AddExpectedMsg("Access granted");
-

- // set up the mock database
- MockDbConnection conn = new MockDbConnection();

20 MockCommand cmd = new MockCommand();
- MockDataReader rdr = new MockDataReader();
-

- conn.SetExpectedCommand(cmd);
- cmd.SetExpectedCommandText(

25 AccessController1.CHECK_SQL);
- cmd.SetExpectedExecuteCalls(1);
- cmd.SetExpectedParameter(
- new MockDataParameter("@user", "dave"));
- cmd.SetExpectedParameter(

30 new MockDataParameter("@password", "shhh"));
- cmd.SetExpectedParameter(
- new MockDataParameter("@resource", "secrets"));
-

- cmd.SetExpectedReader(rdr);
35 object [,] rows = new object[1,1];

- rows[0, 0] = 1;
- rdr.SetRows(rows);
-

- AccessController1 access =
40 new AccessController1("secrets", logger, conn);

-

- Assert.That(
- access.CanAccess("dave", "shhh"),
- Is.True

45);
- logger.Verify();
- conn.Verify();
- cmd.Verify();
- }

50 } A
c

c
e

ss
C

o
n

tr
o

lle
rT

e
st

1
.c

s

On line 1 we bring in the DotNetMock framework’s Data com-

ponents. In the body of the test method, we start by creating

and setting up a mock logger as before. At line 19 we cre-

ate three mock database objects: the connection, a command

(used to issue SQL queries into the database), and a reader

(used to return the results of a query).

We now need to associate these three objects together. Line 23

tells the connection object that when it is asked to generate a

command object it should return our mock command object,

cmd. We then set up that command object’s expectations: the

SQL it should receive, the number of times it will be executed,

and the parameters it should expect to receive.

Line 34 starts the stanza that sets up the reader object. It

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=111

WHEN NOT TO MOCK 112

It isn’t all perfect

Observant readers may be wondering why our new
AccessController class went to the trouble of using a
Reader object to get the count back from executing
the query. Why didn’t we just use the ExecuteScalar
method of the command object to return the count
directly?

Unfortunately, the mock object implementation of
IDbCommand isn’t quite complete (at least at the time
of writing). Although ExecuteScalar is implemented,
it always returns a null value. This means that we
couldn’t use it in our tests.

is first associated with the command (so that when the mock

command is executed it will return this reader object). We

then set up its result set, a two dimensional array of objects,

containing the rows returned by the query and the columns

in each row. In our case, the result set contains just a single

row containing a single column, the count, but we still need

to wrap it in the two-dimensional array.

Finally, on line 39, we create our access controller and check

to see if “dave” can access the resource “secrets” by using the

password “shhh.” Because these values correspond to the

values we set up for the query, the access controller will be

able to use our mock database objects, which will return a

count of “1” and the access will be accepted. At the end of the

test, we then verify that the logger, connection, and command

mock objects were used correctly by our method under test.

6.4 When Not To Mock

Mock objects are an appealing technology, but because they

involve writing code, they represent a definite cost to a project.

Whenever you find yourself thinking that you want to write

a mock object to help with testing, stop and consider alter-

natives for a couple of seconds. In particular, ask yourself

the simple question: “Do I need to write a mock object at

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=112

WHEN NOT TO MOCK 113

all?” Sometimes we can eliminate the need for a mock object

through some simple refactoring.

As a (somewhat contrived) example, let’s imagine that we’re

writing code that downloads files to a handheld device over a

relatively slow wire. Because of some hardware restrictions,

after we’ve sent a block of data, we have to wait a while before

trying to talk with the device again. The length of time we have

to wait depends on the amount of data sent—the hardware

guys gave us a table of values to use.

We might start off by writing a routine that waits a length of

time dependent on the size of data sent:

public void WaitForData(int dataSize)

{

int timeToWait;

if (dataSize < 100)
{

timeToWait = 50;

}

else if (dataSize < 250)
{

timeToWait = 100;

}

else
{

timeToWait = 200;

}

Thread.Sleep(timeToWait);

} E
xa

m
p

le
.c

s
Now we want to test this method, but there’s a problem. The

only way to see if it works is to check to see if it sleeps for

the right amount of time for various values of the dataSize

parameters. That’s not an easy test to write: we’d have to

build in a fudge factor, because the time we measure for the

wait won’t be exact. We might even have to set up some kind

of watchdog thread to ensure that the sleep doesn’t go on too

long. There’s also the elapsed time to consider. If running our

tests causes Thread.Sleep to be called multiple times, our

unit tests will take longer to complete—which won’t increase

our popularity amongst co-workers.

After reading this chapter, your first thought might be to solve

these problems using a mock object. If we replace Thread

with some kind of mock object, we can verify that its Sleep()

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=113

WHEN NOT TO MOCK 114

method was called with the expected values. Class Thread

is not an interface, and even if it were, it has a boatload of

properties and members.

This is the time to reflect: could we redesign our code slightly

to make it easier to test? Of course we can!

public int HowLongToWait(int dataSize)

{

int timeToWait;

if (dataSize < 100)
{

timeToWait = 50;

}

else if (dataSize < 250)
{

timeToWait = 100;

}

else
{

timeToWait = 200;

}

return timeToWait;

}

public void WaitForData(int dataSize)

{
Thread.Sleep(HowLongToWait(dataSize));

} E
xa

m
p

le
.c

s

In this code we’ve split the waiting into two methods. One cal-

culates the number of milliseconds to wait based on the data’s

size, and the other calls it to get the parameter to pass the

Thread.Sleep(). If we assume that the framework Sleep()

method works, then there’s probably no need to test this sec-

ond method: we can eyeball it and see it does what it says

it should. That leaves us with the simple task of testing the

method that calculates the time to wait.

[Test]

void WaitTimes()
{

Waiter w = new Waiter();

Assert.That(w.HowLongToWait(0), Is.EqualTo(50));

Assert.That(w.HowLongToWait(99), Is.EqualTo(50));

Assert.That(w.HowLongToWait(100), Is.EqualTo(100));

Assert.That(w.HowLongToWait(249), Is.EqualTo(100));

Assert.That(w.HowLongToWait(250), Is.EqualTo(200));

Assert.That(w.HowLongToWait(251), Is.EqualTo(200));

} E
xa

m
p

le
.c

s

A simple refactoring has led us to a better design and elimi-

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=114

WHEN NOT TO MOCK 115

nated a whole lot of pain associated with coding up the tests.

Testing for time

Here’s another, real-world example that shows how a simple

refactoring makes for both an easier test and a better, more

decoupled design. This is the code to be tested; note the de-

pendency on the current system time.

public static string DaysFromNow(DateTime last)

{
TimeSpan span = DateTime.Now - last;

switch (span.Days)

{
case 0:

return "Today";
case 1:

return "Yesterday";

default:
return span.Days + " days ago";

}

}

On this particular project, one senior engineer spent a lot

of time trying to invent a good way to fake out or change

DateTime.Now. But then an intern from Portugal who

learned C# via a few test-driven development books saw

the code and made the obvious suggestion of extracting a

parameter[FBB+99]. It took some time for the senior engi-

neer to recover from a bad case of “bruised ego,” but everyone

agreed it was for the best.

The code was refactored to look like the following.

public static

string DaysFromNow(DateTime current, DateTime last)

{
TimeSpan span = current - last;

switch (span.Days)

{
case 0:

return "Today";
case 1:

return "Yesterday";

default:
return span.Days + " days ago";

}

}

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=115

WHEN NOT TO MOCK 116

Notice there is no dependency on the current date or time

anywhere in the code; it is passed in from the caller. Now we

can use a very simple test to drive this code.

[Test]

public void Yesterday()

{
DateTime date = new DateTime(2007, 9, 27);

DateTime dateMinusOneDay = new DateTime(2007, 9, 26);

Assert.That(

DaysFromNow(date, dateMinusOneDay),

Is.EqualTo("Yesterday")

);

}

Sometimes you can’t change your existing interfaces to accept

the parameterized singleton, or just want to do things in a

more incremental fashion so we don’t have to upheave the

entire codebase. In that case, add a new interface that adds

the parameterized singleton, then have the original interface

delegate to the new one.

public static

string DaysFromNow(DateTime last)

{
return DaysFromNow(DateTime.Now, last);

}

We will want to eventually get rid of this delegation, when

practical, of course.

And that’s all there is to mock objects: fake out parts of the

real world so we can concentrate on testing our own code,

which generally has a nice side-effect of improving our design.

Some people might perceive that testing with fakes and mocks

makes the testing less “real,” but as you can see through the

examples, we can actually test interactions that would be diffi-

cult and slow to reproduce accurately in the real world. Also,

remember that it’s called unit testing for a reason; we don’t

drag the whole system along for the ride because we want to

test one behavior of a single class.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=116

Chapter 7

Properties of
Good Tests

Unit tests are very powerful magic, and if used badly can

cause an enormous amount of damage to a project by wast-

ing your time. If unit tests aren’t written and implemented

properly, you can easily waste so much time maintaining and

debugging the tests themselves that the production code—and

the whole project—suffers.

We can’t let that happen; remember, the whole reason you’re

doing unit testing in the first place is to make your life easier!

Fortunately, there are only a few simple guidelines that you

need to follow to keep trouble from brewing on your project.

Good tests have the following properties, which makes them

A-TRIP:

• Automatic

• Thorough

• Repeatable

• Independent

• Professional

Let’s look at what each of these properties means to us.

AUTOMATIC 118

7.1 Automatic

Unit tests need to be run automatically. We mean “automat- A -TRIP

ically” in at least two ways: invoking the tests and checking

the results.

Automatic Invocation

It must be really easy for you to invoke one or more unit tests,

as you will be doing it all day long, day in and day out. So it

really can’t be any more complicated than pressing one button

in the IDE or typing in one command at the prompt in order

to run the tests you want. Some IDEs can even be set up to

run the unit tests continually in the background.

It’s important to maintain this environment: don’t introduce

a test that breaks the automatic model by requiring manual

steps. Whatever resources the test requires (database, net-

work connections, etc.), make these an automatic part of the

test itself. Mock objects, as described in Chapter 6, can help

insulate you from changes in the real environment if needed.

But you’re not the only one running tests. Somewhere a ma-

chine should be running all of the unit tests for all checked-in

code continuously. This automatic, unattended check acts as

a “back stop”; a safety mechanism to ensure that whatever

is checked in hasn’t broken any tests, anywhere. In an ideal

world, this wouldn’t be necessary as you could count on every

individual developer to run all the necessary tests themselves.

But this isn’t an ideal world. Maybe an individual didn’t run

some necessary test in a remote corner of the project. Perhaps

they have some code on their own machine that makes it all

work—but they haven’t checked that code in, so even though

the tests work on their own machine, those same tests fail

everywhere else.

You may want to investigate systems such as Cruise Con-

trol1 and other open source products that manage continuous

building and testing.

1http://ccnet.thoughtworks.com

http://ccnet.thoughtworks.com
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=118

THOROUGH 119

Automatic Checking

Finally, by “automatic” we mean that the test must determine

for itself whether it passed or failed. Having a person (you or

some other hapless victim) read through the test output and

determine whether the code is working or not is a recipe for

project failure. Also, in the interests of speed, note that any

test that spews tons of console I/O (via Console.WriteLine,

log4net or something similar) will slow down the unit tests—

sometimes dramatically. We want unit tests to be silent, self-

contained, and fast.

It’s an important feature of consistent regression to have the

tests check the results for themselves. We humans aren’t very

good at those repetitive tasks. We’ll make mistakes in the

checking, and waste time investigating a bug that may not ex-

ist, or not catch a new bug that will go on to cause additional

damage. The computer will not make these inconsistent mis-

takes; a properly written unit test will check the same thing

every time it’s run with perfect consistency. Besides we’ve got

more important things to do—remember the project?

This idea of having the tests run by themselves and check

themselves is critical, because it means that you don’t have to

think about it—it just happens as part of the project. Testing

can then fulfill its role as a major component of our project’s

safety net. (Version control and automation are the other two

major components of the “safety net.”) Tests are there to catch

you when you fall, but they’re not in your way.

You’ll need all of your concentration as you cross today’s high-

wire.

7.2 Thorough

Good unit tests are thorough; they test everything that’s likely A- T RIP

to break. But just how thorough?

At one extreme, you can aim to test every line of code, ev-

ery possible branch the code might take, every exception it

throws, and so on. At the other extreme, you test just the

most likely candidates—boundary conditions, missing and

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=119

THOROUGH 120

malformed data, and so on. It’s a question of judgment, based

on the needs of your project.

If you want to aim for more complete coverage, then you may

want to invest in code coverage tools to help. For instance

NCover, at http://ncover.org.2 NCover produces XML files

that describe the coverage, there are a couple of tools to visu-

alize and explore that coverage data:

• NCoverExplorer3, which is part of the TestDriven.NET

extension to Visual Studio.NET.

• CruiseControl.NET comes with a very nice XSL file for

transforming the NCover XML into some really cool-

looking HTML.

• SharpDevelop 2.1 (and above) has NCover integration

that will allow you to browse a tree-view of classes and

methods. It also has as an option to highlight lines of

code in the IDE that were not covered by the unit tests.

These tools can help you determine how much of the code

under test is actually being exercised, as well as help you

pinpoint what’s not being exercised so you can focus your

testing efforts.

It’s important to realize that bugs are not evenly distributed

throughout the source code. Instead, they tend to clump

together in problematic areas (for an interesting story along

these lines, see the sidebar on the next page).

This phenomenon leads to the well-known battle cry of “don’t

patch it, rewrite it.” Often, it can be cheaper and less painful

to throw out a piece of code you’ve written that has a clump

of bugs and rewrite it from scratch. There’s nothing that can

improve code quite like a good old-fashioned disk crash.

But because it’s usually more fun to write new code rather

than refactor existing code, be careful with wholesale re-

writing—especially if it’s someone else’s code. Rather than

throw it out, first try to refactor someone else’s code to make

2As of this writing, NCover does not work with Mono due to the way it

hooks into Microsoft-specific portions of the CLR.
3http://kiwidude.com/blog

http://ncover.org
http://kiwidude.com/blog
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=120

THOROUGH 121

Reported Bugs vs. Unit Test Coverage

We had a client recently that didn’t quite believe in
the power of unit tests. A few members of the team
were very good and disciplined at writing unit tests for
their own modules, many were somewhat sporadic
about it, and a few refused to be bothered with unit
tests at all.

As part of the hourly build process, we whipped up
a simple Ruby script that performed a quick-and-dirty
analysis of test coverage: it tallied up the ratio of test
code asserts to production code methods for each
module. Well-tested methods may have 3, 4, or more
asserts each; untested methods will have none at all.
This analysis ran with every build and produced a bar-
graph, ranking the most-tested modules at the top
and the untested modules at the bottom.

After a few weeks of gathering figures, we showed
the bargraph to the project manager, without initial
explanation. He was very surprised to see all of the
“problem modules” lumped together at the bottom—
he thought we had somehow produced this graph
based on bug reports from QA and customer sup-
port. Indeed, the modules at the top of the graph
(well tested) were nearly unknown to him; very few, if
any, problems had ever been reported against them.
But the clump of modules at the bottom (that had
no unit tests) were very well known to him, the sup-
port managers, and the local drugstore which had
resorted to stocking extra-large supplies of antacid.

The results were very nearly linear: the more unit-
tested the code, the fewer problems.

it more unit-testable. Then if that’s not working, you can go

ahead and succumb to the sweet siren song of coding from

scratch.

Either way, it will be safer to do: you’ll have a set of unit tests

that can confirm the new code works as it should.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=121

REPEATABLE 122

7.3 Repeatable

Just as every test should be independent from every other A-T R IP

test, they must be independent of the environment as well.

The goal remains that every test should be able to run over

and over again, in any order, and produce the same results.

This means that tests cannot rely on anything in the exter-

nal environment that isn’t under your direct control. That

includes obvious external entities such as databases, sys-

tem time, network conditions, but also perhaps less obvi-

ous dependents such as global variables. Any global state

(in false singletons or otherwise) really isn’t under your direct

control—it only seems like it.

Something, somewhere, when you least expect it, will alter

that state and you’ll end spending a lot a quality time in the

debugger trying to discover how you got into that state. That’s

the kind of frustration you just don’t need.

Use mock objects as necessary to isolate the item under test

and keep it independent from the environment. If you are

forced to use some element from the real world (a database,

perhaps), make sure that you won’t get interference from any

other developer. Each developer needs their own “sandbox”

to play in, whether that’s their own database instance within

Oracle, or their own webserver on some non-standard port.

Without repeatability, you might be in for some surprises at

the worst possible moments. What’s worse, these sort of sur-

prises are usually bogus—it’s not really a bug, it’s just a prob-

lem with the test. You can’t afford to waste time chasing down

phantom problems.

Each test should produce the same results every time. If it

doesn’t, then that should tell you that there’s a real bug in

the code.

7.4 Independent

Tests need to be kept neat and tidy, which means keeping A-TR I P

them tightly focused, and independent from the environment

and each other (remember, other developers may be running

these same tests at the same time).

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=122

PROFESSIONAL 123

When writing tests, make sure that you are only testing one

thing at a time.

Now that doesn’t mean you should use only one assert in a

test, but that a test method should test only what the name

implies—the same as regular methods in production code. If

that means stitching a few methods together to accomplish

the test, then so be it. Sometimes an entire test method might

only test one small aspect of a complex piece of functionality—

you may need multiple test methods to exercise the function-

ality thoroughly.

At any rate, you want to achieve a traceable correspondence

between potential bugs and test code. In other words, when

a test fails, it should be obvious where in the code the under-

lying bug exists without looking at the test code itself. The

name of the test should tell us all we need to know. Other-

wise, we’ve got to go hunting for it, and that will just waste

our time.

Independent also means that no test relies on any other test;

we should be able to run any individual test at any time, and

in any order. We really don’t want to have to rely on any other

test having run first, especially since the ordering will vary

between the different test runners.

We’ve shown mechanisms to help you do this: the per-test

setup and teardown methods and the per-fixture setup and

teardown methods. Use these methods to ensure that every

test gets a fresh start—and doesn’t impact any test that might

run next.

Remember, you aren’t guaranteed that NUnit tests will run in

any particular order, and as you start combining tests in ever-

increasing numbers, you really can’t afford to carry ordering

dependencies along with you.

John Donne may have been right about people, but not about

unit tests: every test should be an island.

7.5 Professional

The code you write for a unit test is real; some may argue A-TRI P

it’s even more real than the code you ship to customers. This

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=123

PROFESSIONAL 124

means that it must be written and maintained to the same

professional standards as your production code. All the usual

rules of good design—maintaining encapsulation, honoring

the DRY principle, lowering coupling, etc.—must be followed

in test code just as in production code.

It’s easy to fall into the trap of writing very linear test code;

that is, code that just plods along doing the same thing over

and over again, using the same lines of code over and over

again, with nary a function or object in sight. That’s a bad

thing. Test code must be written in the same manner as real

code. That means you need to pull out common, repeated bits

of code and put that functionality in a method instead, so it

can be called from several different places.

You may find you accumulate several related test methods

that should be encapsulated in a class. Don’t fight it! Go

ahead and create a new class, even if it’s only ever used for

testing. That’s not only okay, it’s encouraged: test code is real

code. In some cases, you may even need to create a larger

framework, or create a data-driven testing facility (remember

the simple file reader for TestLargest on page 62?).

Don’t waste time testing aspects that won’t help you. Remem-

ber, you don’t want to create tests just for the sake of creating

tests. Test code must be thorough in that it must test every-

thing interesting about a behavior that might break. If it’s not

likely to contain a bug, don’t bother testing it. That means

that usually you shouldn’t waste time testing things like sim-

ple property accessors:

public Money Balance

{

get { return balance; }

}

Frankly, there’s just not much here to go wrong that the com-

piler can’t catch.4 Testing methods such as these is just a

waste of time. However, if the property is doing some work

along the way, then suddenly it becomes interesting—and we

will want to test it:

public Money Balance

4Unless, of course, the IL compiler, JIT compiler, or CLR itself has a bug.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=124

TESTING THE TESTS 125

{
get

{
return posted.GetBalance() -

unposted.GetDebits() +

unposted.GetCredits();

}
}

That’s probably worth testing.

Finally, expect that, in the end, there will be at least as much

test code written as there will be production code. Yup, you

read that right. If you’ve got 20,000 lines of code in your

project, then it would be reasonable to expect that there would

be about 20,000 lines or more of unit test code to exercise it.

That’s a lot of test code, which is partly why it needs to be

kept neat and tidy, well designed and well-factored, just as

professional as the production code.

7.6 Testing the Tests

There is one major conceptual weakness in our plans so far.

Testing code to make sure it works is a great idea, but you

have to write code to perform the tests. What happens when

there are bugs in our test code? Does that mean you have to

write test code to test the tests that test the code??? Where

will it all end?

Fortunately, you don’t need to go to that extreme. There are

two things you can do to help ensure that the test code is

correct:

• Improve tests when fixing bugs

• Prove tests by introducing bugs

How to Fix a Bug

The steps you take when fixing a bug are very important to

unit testing. Many times, an existing test will expose a bug in

the code, and you can then simply fix the code and watch the

vigilant test pass.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=125

TESTING THE TESTS 126

When a bug is found “in the wild” and reported back, that

means there’s a hole in the safety net—a missing test. This

is an opportunity to close the hole, and make sure that this

particular bug never escapes into the wild again. All it takes

is four simple steps:

1. Identify the bug, or bugs, that caused the errant be-

haviour.

2. Write a test that fails, for each individual bug, to prove

the bug exists.5

3. Fix the code such that the test now passes.

4. Verify that all tests still pass (i.e., you didn’t break any-

thing else as a result of the fix).

This simple mechanism of applying real-world feedback to

help improve the tests is very effective. Over time, you can

expect that your test coverage will steadily increase, and the

number of bugs that escape into the wild from existing code

will decrease.

Of course, as you write new code, you’ll undoubtedly intro-

duce new bugs, and new classes of bugs, that aren’t being

caught by the tests. But when fixing any bug, ask yourself

the key question:

Could this same kind of problem happen any-

where else?

Then it doesn’t matter whether you’re fixing a bug in an older

feature or a new feature; either way, apply what you’ve just

learned to the whole project. Encode your new-found knowl-

edge in all the unit tests that are appropriate, and you’ve done

more than just fix one bug. You’ve caught a whole class of

bugs, and potentially found an opportunity to refactor simi-

lar code into one place for easier testing, maintenance, and

enhancement.

5Sometimes a bit of refactoring may need to happen so that tests can be

written more easily.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=126

TESTING THE TESTS 127

[Test]

public void Add()

{
// Create a new account object

Account acct = new Account();

// Populate with our test person

acct.SetPerson(TEST_PERSON_1);

// Add it to the database
DatabaseHandler.Add(acct);

// Should find it

Assert.IsTrue(DatabaseHandler.Search(TEST_PERSON_1);

}

Figure 7.1: Test Adding a Person to a Database

Spring the Trap

If you’re not sure that a test is written correctly, the easiest

thing to do is to “spring the trap”: cause the production code

to exhibit the very bug you’re trying to detect, and verify that

the test fails as expected.

For instance, suppose you’ve got a test method that adds a

customer account to the database and then tries to find it,

something like the code in Figure 7.1. Perhaps you’re not cer-

tain that the “finding” part is really working or not—it might

be reporting success even if the record wasn’t added correctly.

So maybe you’ll go into the Add() method for Database-

Handler and short-circuit it: just return instead of actually

adding the record to the database. Now you should see the

assertion fail, because the record has not been added.

But wait, you may cry, what about a leftover record from a

previous test run? Won’t that be in the database? No, it won’t,

for several reasons:

• You may not really be testing against a live database.

The code exercised by the above test case lies between

the add method shown and the actual low-level database

calls. Those database calls may well be handled by a

mock object, whose data is not held persistently in be-

tween runs.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=127

TESTING THE TESTS 128

• Tests are independent. All tests can be run in any or-

der, and do not depend on each other, so even if a real

database is part of this test, the setup and tear-down

must ensure that you get a “clean sandbox” to play in.

The attempt above to spring the trap can help prove that

this is true.

Now the Extreme Programming folks claim that their disci-

plined practice of test-first development avoids the problem

of poor tests that don’t fail when they should. In test-first

development, you only ever write code to fix a failing test. As

soon as the test passes, then you know that the code you just

added fixed it. This puts you in the position where you always

know with absolute certainty that the code you introduced

fixes the failing test that caused you to write the code in the

first place.

But there’s many a slip ’twixt the cup and the lip, and while

test-first development does improve the situation dramatical-

ly, there will still be opportunities to be misled by coinci-

dences. The practice of pair programming further reduces the

chance of these kinds of slip-ups, but you we may not always

have someone to pair with. For those occasions, you can sat-

isfy any lingering doubts by deliberately “springing the trap”

to make sure that all is as you expect.

Finally, remember to write tests that are A-TRIP (Automatic,

Thorough, Repeatable, Independent, Professional); keep add-

ing to your unit tests as new bugs and types of bugs are dis-

covered; and check to make sure your tests really do find the

bugs they target.

Then sit back and watch problems on your project disappear

like magic.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=128

Chapter 8

Testing on a Project

Up to now we’ve talked about testing as an individual, solitary

exercise. But of course, in the real world you’ll likely have

teammates to work with. You’ll all be unit testing together,

and that brings up a couple of issues.

8.1 Where to Put Test Code

On a small, one-person project, the location of test code and

encapsulation of the production code may not be very impor-

tant, but on larger projects it can become a critical issue.

There are several different ways of structuring your produc-

tion and test code that we’ll look at here.

In general, you don’t want to break any encapsulation for the

sake of testing (or as Mom used to say, “don’t expose your pri-

vates!”). Most of the time, you should be able to test a class

by exercising its public methods. If there is significant func-

tionality that is hidden behind private or protected access,

that might be a warning sign that there’s another class in

there struggling to get out. When push comes to shove, how-

ever, it’s probably better to break encapsulation with working,

tested code than it is to have good encapsulation of untested,

non-working code.

WHERE TO PUT TEST CODE 130

Same directory

Suppose you are writing a class named:

PragProg.Wibble.Account

with a corresponding test in:

PragProg.Wibble.AccountTest

The first and easiest method of structuring test code is to sim-

ply include it right in the same project and assembly alongside

the production code.

This has the advantage that AccountTest can access inter-

nal and protected internal member variables and meth-

ods of Account. But the disadvantage is that the test code

is lying around, cluttering up the production code directory.

This may or may not be a problem depending on your method

of creating a release to ship to customers.

Most of the time, it’s enough of a problem that we prefer one

of the other solutions. But for small projects, this might be

sufficient.

Separate Assemblies

The next option is to create your tests in a separate assembly

from the production code.

This has the advantage of keeping a clean separation between

code that you ship and code for testing.

The disadvantage is that now the test code is in a different

assembly; You won’t be able to access internal or protected

internal members unless your test code uses a subclass of

the production code that exposes the necessary members. For

instance, suppose the class you want to test looks like this:

namespace FacilitiesManagment {

public class Pool {

protected Date lastCleaned;

public void xxxx xx {
xxx xxx xxxx;

}
...

}
}

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=130

WHERE TO PUT TEST CODE 131

Acme.Pool

#LastCleaned()

Acme.Test.PoolForTesting

+LastCleaned()

protected

method in

production

code

PRODUCTION CODE

public in test

code

TEST CODE

Figure 8.1: Subclasses Expose Methods for Testing

You need to get at that non-public bit of data that tells you

when the pool was last cleaned for testing, but there’s no ac-

cessor for it. (If there were, the pool association would prob-

ably sue us; they don’t like to make that information public.)

So you make a subclass that exposes it just for testing.

using FacilitiesManagment;

namespace FacilitiesManagmentTesting {

public class PoolForTesting : Pool {

public Date LastCleaned {

get { return lastCleaned; }

}
}

}

You then use PoolForTesting in the test code instead of us-

ing Pool directly (see Figure 8.1). In fact, you could make this

class internal to the test assembly (to ensure that we don’t

get sued).

Whatever convention the team decides to adopt, make sure it

does so consistently. You cannot have some of the tests in

the system set up one way, and other tests elsewhere set up

a different way. Pick a style that looks like it will work in your

environment and stick with it for all of the system’s unit tests.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=131

WHERE TO PUT NUNIT 132

8.2 Where to Put NUnit

One issue that comes up on real projects is how to distribute

NUnit itself.

You could have each individual developer install the latest ver-

sion on their own workstations (as well as on the automated

build machine). All the developers would have to install NUnit

into the same directory, and make sure to reference that spe-

cific nunit.framework.dll assembly as not some random

one in the GAC or elsewhere via a shortcut or symlink. This is

all actually more difficult than it sounds, especially with little

bugs that Visual Studio has with assembly references thrown

in for fun.

Instead, you should distribute NUnit via your version control

system. Many .NET and Java projects define both a src/

directory and a lib/ directory. The src/ directory contains

the source code to the project, and the lib/ directory contains

pre-compiled components (usually third-party).

In this context, you’d have a lib/nunit/ directory that con-

tains the NUnit binary distribution. Your projects and NAnt

files would reference the nunit.framework.dll in this direc-

tory, and developers would run the nunit.exe GUI from this

directory via a shortcut.

Now keeping developers’ versions of NUnit synchronized is

easy, as is deploying any upgrades or customizations. It keeps

the environment consistent, freeing up time that would other-

wise be spent on figuring out mismatched NUnit issues (which

usually manifest themselves in odd ways). You may want to

discourage developers from installing NUnit on their work-

station to reduce confusion. If they do, keep an eye out for

changes in the project or NAnt build files that reference NUnit

assemblies other than those in the project’s lib/nunit/ di-

rectory.

8.3 Test Courtesy

The biggest difference between testing by yourself and testing

with others lies in synchronizing working tests and code.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=132

TEST COURTESY 133

Obfuscation and Packaging

Matt tells the following story about packaging, obfus-
cation, and manual maintenance:

“Recently I worked on a project that used a code ob-
fuscation program, which the team thought helped
protect their intellectual property. They packaged
their unit tests in the same assembly as their produc-
tion code, but the unit tests were #if’d out in the Re-
lease build. Any time a developer added a new test
file, they had to remember to add the #if or risk vio-
lating the obfuscation policy. Or, did they?

Putting the tests into the assembly was reducing the
effective design feedback of their packaging (which
had major issues), so I proposed to extract the unit
tests into a separate assembly so the design issues
could be made more obvious. They said this was im-
possible because the unit tests were testing classes
marked ’internal’ and thus the tests had to be inside
the same assembly as the production code.

I was curious why these classes had to be internal,
and this turned up an amusing (albeit embarrassing)
misunderstanding: the team thought that in order
for the obfuscater to work properly, classes had to
be marked as internal. That is, they thought public
classes wouldn’t be obfuscated in name or in code.

This was a mistake, of course. This particular obfus-
cater didn’t really care, and I was able to configure
it to obfuscate everything just fine. One of the neat
tricks that came out of this was that this obfuscation
product was able to take several assemblies that ref-
erenced each other, combine them into one binary,
and prune out unused methods and code.

Because the unit tests weren’t referenced directly in
any of the application code, they were pruned out
automatically. The manual #if statements they kept
using could simply be removed. This also opened the
door to making those internal classes public; the unit
tests could then be extracted into a separate assem-
bly, and design feedback could be obtained and
acted upon appropriately.”

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=133

TEST COURTESY 134

When working with other members of a team, you will be us-

ing some sort of version control system, such as SubVersion,

CVS, or (for the more masochistic among us), Visual Source-

Safe. (If you aren’t familiar with version control, or would like

some assistance in getting it set up and working correctly,

please see [TH03].)

In a team environment (and even in a personal environment)

you should make sure that when you check in code (or other-

wise make it available to everyone) that it has complete unit

tests, and that it passes all of them. In fact, every test in the

whole system should continue to pass with your new code.

The rule is very simple: As soon as anyone else can access

your code, all tests everywhere need to pass. Since you should

normally work in fairly close synchronization with the rest of

the team and the version control system, this boils down to

“all tests pass all the time.”

Many teams institute policies to help “remind” developers of

the consequences of breaking the build, or breaking the tests.

These policies might begin by listing potential infractions in-

volving code that you have checked in (or otherwise made

available to other developers):

• Incomplete code (e.g., checking in only one class file but

forgetting to check in other files it may depend upon).

• Code that doesn’t compile.

• Code that compiles, but breaks existing code such that

existing code no longer compiles.

• Code without corresponding unit tests.

• Code with failing unit tests.

• Code that passes its own tests, but causes other tests

elsewhere in the system to fail.

If found guilty of any of these heinous crimes, you may be sen-

tenced to providing donuts for the entire team the next morn-

ing, or beer or soda, or frozen margaritas, or maybe you’ll have

to nursemaid the build machine, or some other token, menial

task.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=134

TEST FREQUENCY 135

A little lighthearted law enforcement usually provides enough

motivation against careless accidents. But what happens if

you have to make an incompatible change to the code, or if

you make a change that does cause other tests to fail else-

where in the system?

The precise answer depends on the methodology and process

you’re using on the project, but somehow you need to coordi-

nate your changes with the folks who are responsible for the

other pieces of code—which may well be you! The idea is to

make all of the necessary changes at once, so the rest of the

team sees a coherent picture (that actually works) instead of

a fragmented, non-functional “work in progress.” (For more

information on how to use version control to set up experi-

mental developer branches, see [TH03].)

Sometimes the real world is not so willing, and it might take a

few hours or even a few days to work out all of the incompati-

ble bits and pieces, during which time the build is broken. If it

can’t be helped, then make sure that it is well-communicated.

Make sure everyone knows that the build will be broken for

the requisite amount of time so that everyone can plan around

it as needed. If you’re not involved, maybe it would be a good

time to take your car in for an oil change or slip off to the

beach for a day or two. If you are involved, get it done quickly

so everyone else can come back from the beach and get to

work!

8.4 Test Frequency

How often should you run unit tests? It depends on what

you’re doing, and your personal habits, but here are some

general guidelines that we find helpful. You want to perform

enough testing to make sure you’re catching everything you

need to catch, but not so much testing that it interferes with

producing production code.

Write a new method

Compile and run local unit tests.

Fix a bug

Write and run tests that demonstrate bug; fix the bug

and re-run unit tests.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=135

TESTS AND LEGACY CODE 136

Any successful compile

Run local unit tests.

Each check-in to version control

Run all module or system unit tests.

Continuously

A dedicated machine should be running a full build and

test, from scratch, automatically throughout the day (ei-

ther periodically or on check-in to version control).

Note that for larger projects, you might not be able to compile

and test the whole system in under a few hours. You may only

be able to run a full build and test overnight. For even larger

projects, it may have to be every couple of days—and that’s a

shame, because the longer the time between automatic builds

the longer the “feedback gap” between creation of a problem

and its identification.

The reason to have a more-or-less continuous build is so that

it can identify any problems quickly. You don’t want to have to

wait for another developer to stumble upon a build problem if

you can help it. Having a build machine act as a constant de-

veloper increases the odds that it will find a problem, instead

of a real developer.

When the build machine does find a problem, then the whole

team can be alerted to the fact that it’s not safe to get any new

code just yet, and can continue working with what they have.

That’s better than getting stuck in a situation where you’ve

gotten fresh code that doesn’t work.

For more information on setting up automatic build and test-

ing systems, nightly and continuous builds, and automation

in general please see [Cla04].

8.5 Tests and Legacy Code

So far, we’ve talked about performing unit tests in the context

of new code. But we haven’t said what to do if your project

has a lot of code already—code that doesn’t have unit tests.

It all depends on what kind of state that code is in. If it’s rea-

sonably well-factored and modular, such that you can get at

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=136

TESTS AND LEGACY CODE 137

all of the individual pieces you need to, then you can add unit

tests fairly easily. If, on the other hand, it’s just a “big ball of

mud” all tangled together, then it might be close to impossi-

ble to test without substantial rewriting. Most older projects

aren’t perfectly factored, but are usually modular enough that

you can add unit tests.

For new code that you write, you’ll obviously write unit tests

as well. This may mean that you’ll have to expose or break out

parts of the existing system, or create mock objects in order

to test your new functionality.

For existing code, you might choose to methodically add unit

tests for everything that is testable. But that’s not very prag-

matic. It’s better to add tests for the most broken stuff first,

to realize a better return on investment of effort.

The most important aspect of unit tests in this environment

is to prevent back-sliding: to avoid the death-spiral where

maintenance fixes and enhancements cause bugs in existing

features. We use NUnit unit tests as regression tests during

normal new code development (to make sure new code doesn’t

break anything that had been working), but regression testing

is even more important when dealing with legacy code.

And it doesn’t have to cover the entire legacy code base, just

the painful parts. Consider the following true story from a

pragmatic developer (the team in question happened to be us-

ing Java and JUnit for this particular project, but they could

just as easily have been using C#, Cobol, C++, Ruby, or any

other programming language):

Regression Tests Save the Day

“Tibbert Enterprises1 ships multiple applications,

all of which are based on a common Lower Level

Library that is used to access the object database.

One day I overheard some application develop-

ers talking about a persistent problem they were

having. In the product’s Lower Level interface, you

can look up objects using the object name, which

1Not their real name.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=137

TESTS AND LEGACY CODE 138

includes a path to the object. Since the application

has several layers between it and the Lower Level

code, and the Lower Level code has several more

layers to reach the object database, it takes a while

to isolate a problem when the application breaks.

And the application broke. After half the ap-

plication team spent an entire day tracking down

the bug, they discovered the bug was in the Lower

Level code that accessed the database. If you had

a space in the name, the application died a violent,

messy death. After isolating the Lower Level code

related to the database access, they presented the

bug to the owner of the code, along with a fix. He

thanked them, incorporated their fix, and commit-

ted the fixed code into the repository.

But the next day, the application died. Once

again, a team of application developers tracked it

down. It took only a half-a-day this time (as they

recognized the code paths by now), and the bug

was in the same place. This time, it was a space

in the path to the object that was failing, instead of

a space in the name itself. Apparently, while inte-

grating the fix, the developer had introduced a new

bug. Once again, they tracked it down and pre-

sented him with a fix. It’s Day Three, and the ap-

plication is failing again! Apparently the developer

in question re-introduced the original bug.

The application manager and I sat down and

figured out that the equivalent of nearly two man-

months of effort had been spent on this one issue

over the course of one week by his team alone (and

this likely affected other teams throughout the com-

pany). We then developed JUnit tests that tested

the Lower Level API calls that the application prod-

uct was using, and added tests for database access

using spaces in both the object name and in the

path. We put the product under the control of our

continuous-build-and-test program (using Cruise-

Control) so that the unit tests were run automat-

ically every time code got committed back to the

repository.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=138

TESTS AND CODE REVIEWS 139

Sure enough, the following week, the test failed

on two successive days, at the hands of the original

developer. He actually came to my office, shook my

hand, and thanked me when he got the automatic

notification that the tests had failed.

You see, without the JUnit test, the bad code

made it out to the entire company during the night-

ly builds. But with our continuous build and test,

he (and his manager and tester) saw the failure at

once, and he was able to fix it immediately before

anyone else in the company used the code. In fact,

this test has failed half a dozen times since then.

But it gets caught, so its not a big deal anymore.

The product is now stable because of these tests.

We now have a rule that any issue that pops

up twice must have a JUnit test by the end of the

week.”

In this story, Tibbert Enterprises aren’t using unit testing to

prove things work so much as they are using it to inoculate

against known issues. As they slowly catch up, they’ll even-

tually expand to cover the entire product with unit tests, not

just the most broken parts.

When you come into a shop with no automated tests of any

kind, this seems to be a very effective approach. Remember,

the only way to eat an elephant is one bite at a time.

8.6 Tests and Code Reviews

Teams that enjoy success often hold code reviews. This can

be an informal affair where a senior person just gives a quick

look at the code. Or perhaps two people are working on the

code together, using Extreme Programming’s “Pair Program-

ming” practice. Or maybe it’s a very formal affair with check-

lists and a small committee.

However you perform code reviews (and we suggest that you

do), make the test code an integral part of the review process.

Since test code is held up to the same high standards as pro-

duction code, it should be reviewed as well.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=139

TESTS AND CODE REVIEWS 140

In fact, it can sometimes be helpful to expand on the idea of

“test-first design” to include both writing and reviewing test

code before writing production code. That is, code and review

in this order:

1. Write test cases and/or test code.

2. Review test cases and/or test code.

3. Revise test cases and/or test code per review.

4. Write production code that passes the tests.

5. Review production and test code.

6. Revise test and production code per review.

Reviews of the test code are incredibly useful. Not only are

reviews more effective than testing at finding bugs in the first

place, but by having everyone involved in reviews you can

improve team communication. People on the team get to see

how others do testing, see what the team’s conventions are,

and help keep everyone honest.

You can use the checklists on page 194 of this book to help

identify possible test cases in reviews. But don’t go overboard

testing things that aren’t likely to break, or repeat essentially

similar tests over and over just for the sake of testing.

Finally, you may want to keep track of common problems

that come up again and again. These might be areas where

more training might be needed, or perhaps something else

that should be added to your standard review checklist.

For example, at a client’s site several years ago, we discovered

that many of the developers misunderstood exception han-

dling. The code base was full of fragments similar to the fol-

lowing:

try

{

DatabaseConnection dbc = new DatabaseConnection();

InsertNewRecord(dbc, record);

dbc.Close();

}

catch (Exception) {}

That is to say, they simply ignored any exceptions that might

have occurred. Not only did this result in random miss-

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=140

TESTS AND CODE REVIEWS 141

Delusional Exception Handling

Matt adds this story:

I was working on a project where the company’s CTO
littered the code with empty catch-all statements.
When running a run-time analysis tool, I noticed that
several dozen exceptions were being thrown and
handled. Upon further inspection, I saw a piece of
code that would almost always fail because it was—
wait for it—dividing by a value that was zero most of
the time.

The team found this apalling, so we spent a day
cleaning up all the empty catch-all statements. The
CTO was upset because the product was now more
visibly unstable. He demanded the team put the bad
exception handling back in. The team refused—the
bugs and broken functionality were always present,
the difference was we could see how bad it was.

ing records, but the system leaked database connections as

well—any error that came up would cause the Close to be

skipped.

We added this to the list of known, typical problems to be

checked during reviews. As code was reviewed, any of these

infamous catch statements that were discovered were first

identified, then proper unit tests were put in place to force

various error conditions (the “E” in RIGHT -BICEP), and the

code was fixed to either propagate or handle the exception.

System stability increased tremendously as a result of this

simple process. For reference, the minimal fix is to close (or

dispose) resources in a finally clause. That way, they’ll be

cleaned up when control flow leaves the try block—whether

an exception is thrown or not.

try

{

DatabaseConnection dbc = new DatabaseConnection();

InsertNewRecord(dbc, record);

}

finally

{

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=141

TESTS AND CODE REVIEWS 142

dbc.Close()
}

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=142

Chapter 9

Design Issues

So far we have discussed unit testing as it helps you to un-

derstand and verify the functional, operational characteristics

of your code. But unit testing offers several opportunities to

improve the design and architecture of your code as well.

In this chapter, we’ll take a look at the following design-level

issues:

• Better separation of concerns by designing for testability

• Clarifying design by defining class invariants

• Improving interfaces with test-driven design

• Establishing and localizing validation responsibilities

9.1 Designing for Testability

“Separation of Concerns” is probably the single most impor-

tant concept in software design and implementation. It’s the

catch-all phrase that encompasses encapsulation, orthogo-

nality, coupling, and all those other computer science terms

that boil down to “write shy code” [HT00].

You can keep your code well-factored (i.e., “shy”) and easier to

maintain by explicitly designing code to be testable. For ex-

ample, suppose you are writing a method that will sleep until

the top of the next hour. You’ve got a bunch of calculations

and then a Sleep():

DESIGNING FOR TESTABILITY 144

public void SleepUntilNextHour() {

int howlong;
xx xxxx x xxxx xx xx xxx;

// Calculate how long to wait...
x x xx xxx xxx x x xx;
xx xxxx x xxxx xx xx xxx;

Thread.Sleep(howlong);
return;

}

How will you test that? Wait around for an hour? Set a timer,

call the method, wait for the method to return, check the

timer, handle the cases when the method doesn’t get called

when it should—this is starting to get pretty messy. We saw

something similar back in Chapter 6, but this issue is impor-

tant enough to revisit. Once again, we’ll refactor the method

in order to make testing easier.

Instead of combining the calculation of how many millisec-

onds to sleep with the Sleep() method itself, split them up:

public void SleepUntilNextHour() {

int howlong = MilliSecondsToNextHour(DateTime.Now);

Thread.Sleep(howlong);
return;

}

What’s likely to break? The system’s Sleep call? Or our code

that calculates the amount of time to wait? It’s probably a fair

bet to say that .NET’s Thread.Sleep() works as advertised

(even if it doesn’t, our rule is to always suspect our own code

first, see the tip Select Isn’t Broken in [HT00]). So for now, you

only need to test that the number of milliseconds is calculated

correctly, and what might have been a hairy test with timers

and all sorts of logic (not to mention an hour’s wait) can be

expressed very simply as:

Assert.AreEqual(10000, MilliSecondsToNextHour(DATE_1));

If we’re confident that MilliSecondsToNextHour() works to

our satisfaction, then the odds are that SleepUntilNext-

Hour() will be reliable as well—if it is not, then at least we

know that the problem must be related to the sleep itself, and

not to the numerical calculation. You might even be able to

reuse the MilliSecondsToNextHour() method in some other

context.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=144

REFACTORING FOR TESTING 145

Figure 9.1: Recipes GUI Screen

This is what we mean when we claim that you can improve

the design of code by making it easier to test. By changing

code so that you can get in there and test it, you’ll end up

with a cleaner design that’s easier to extend and maintain as

well as test.

But instead of boring you with examples and techniques, all

you really need to do is remember this one fundamental ques-

tion when writing code:

How am I going to test this?

If the answer is not obvious, or if it looks like the test would be

ugly or hard to write, then take that as a warning signal. Your

design probably needs to be modified; change things around

until the code is easy to test, and your design will end up

being far better for the effort.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=145

REFACTORING FOR TESTING 146

Recipes

name

ingredients

Load()

Save()

ShowGUI()

Figure 9.2: Original Recipes Static Class Diagram

9.2 Refactoring for Testing

Let’s look at a real-life example. Here are excerpts from a

novice’s first attempt at a recipe management system. The

GUI, shown in Figure 9.1 on the preceding page, is pretty

straightforward. There’s only one class, with GUI behavior

and file I/O intermixed.

It reads and writes individual recipes to files, using a line-

oriented format, somewhat like an INI or properties file:

NAME=Cheeseburger

INGREDIENTS=3
1/4 lb ground sirloin

3 slices Vermont cheddar cheese
2 slices maple-cured bacon c

h
e

e
se

b
u

rg
e

r.
tx

t

And here’s the code, in its entirety. As is, this is pretty hard to

test. You’ve got to run the whole program and operate the GUI

to get at any part of it. All of the file I/O and search routines

access the widgets directly, and so are tightly coupled to the

GUI code (see, for instance, lines 138, 150, 157, and 166). In

fact, the UML diagram for this class, shown in Figure 9.2, is

kind of embarrassing—it’s just one big class! Unfortunately,

this kind of code is commonplace in many .NET projects be-

cause Visual Studio’s designer-generated code gently coerces

programmers to add logic directly into the Form or Control

class. The forms designers for WinForms and ASP.NET are

great tools—just be aware of these sinful temptations.

Line 1 using System;
- using System.Drawing;

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=146

REFACTORING FOR TESTING 147

- using System.Collections;
- using System.ComponentModel;
5 using System.Windows.Forms;
- using System.Data;
- using System.IO;
-

- public class Recipes : Form {
10 private Button exitButton = new Button();

- private StatusBar statusBar = new StatusBar();
- private GroupBox groupBox1 = new GroupBox();
- private TextBox titleText = new TextBox();
- private Button searchButton = new Button();

15 private ListBox searchList = new ListBox();
- private GroupBox groupBox2 = new GroupBox();
- private ListBox ingredientsList = new ListBox();
- private Button removeButton = new Button();
- private TextBox ingredientsText = new TextBox();

20 private Button saveButton = new Button();
- private Button addButton = new Button();
-

- public Recipes() {
- InitializeComponent();

25 }
-

- private void InitializeComponent() {
- exitButton.Location =
- new System.Drawing.Point(120, 232);

30 exitButton.Size = new System.Drawing.Size(48, 24);
- exitButton.Text = "Exit";
- exitButton.Click +=
- new System.EventHandler(exitButton_Click);
-

35 statusBar.Location = new System.Drawing.Point(0, 261);
- statusBar.Size = new System.Drawing.Size(400, 16);
-

- groupBox1.Controls.Add(searchList);
- groupBox1.Controls.Add(searchButton);

40 groupBox1.Controls.Add(titleText);
- groupBox1.Location = new System.Drawing.Point(8, 8);
- groupBox1.Size = new System.Drawing.Size(176, 216);
- groupBox1.TabStop = false;
- groupBox1.Text = "Recipes";

45

- searchList.Location = new System.Drawing.Point(16, 56);
- searchList.Size = new System.Drawing.Size(144, 147);
- searchList.SelectedIndexChanged +=
- new System.EventHandler(

50 searchList_SelectedIndexChanged);
-

- searchButton.Location = new System.Drawing.Point(112, 24);
- searchButton.Size = new System.Drawing.Size(48, 24);
- searchButton.Text = "Search";

55 searchButton.Click +=
- new System.EventHandler(searchButton_Click);
-

- titleText.Location = new System.Drawing.Point(16, 24);

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=147

REFACTORING FOR TESTING 148

- titleText.Size = new System.Drawing.Size(88, 20);
60

- groupBox2.Controls.Add(addButton);
- groupBox2.Controls.Add(ingredientsText);
- groupBox2.Controls.Add(removeButton);
- groupBox2.Controls.Add(ingredientsList);

65 groupBox2.Location = new System.Drawing.Point(200, 8);
- groupBox2.Size = new System.Drawing.Size(192, 248);
- groupBox2.TabStop = false;
- groupBox2.Text = "Ingredients";
-

70 addButton.Location = new System.Drawing.Point(136, 176);
- addButton.Size = new System.Drawing.Size(48, 23);
- addButton.Text = "Add";
- addButton.Click +=
- new System.EventHandler(addButton_Click);

75

- ingredientsText.Location = new System.Drawing.Point(16, 176);
- ingredientsText.Size = new System.Drawing.Size(112, 20);
-

- removeButton.Enabled = false;
80 removeButton.Location = new System.Drawing.Point(16, 208);

- removeButton.Size = new System.Drawing.Size(168, 32);
- removeButton.Text = "Remove";
- removeButton.Click +=
- new System.EventHandler(removeButton_Click);

85

- ingredientsList.Location = new System.Drawing.Point(16, 24);
- ingredientsList.Size = new System.Drawing.Size(160, 134);
- ingredientsList.SelectedIndexChanged +=
- new System.EventHandler(

90 ingredientsList_SelectedIndexChanged);
-

- saveButton.Enabled = false;
- saveButton.Location = new System.Drawing.Point(40, 232);
- saveButton.Size = new System.Drawing.Size(48, 24);

95 saveButton.Text = "Save";
- saveButton.Click +=
- new System.EventHandler(saveButton_Click);
-

- AutoScaleBaseSize = new System.Drawing.Size(5, 13);
100 ClientSize = new System.Drawing.Size(400, 277);

- Controls.Add(saveButton);
- Controls.Add(groupBox2);
- Controls.Add(groupBox1);
- Controls.Add(statusBar);

105 Controls.Add(exitButton);
- groupBox1.ResumeLayout(false);
- groupBox2.ResumeLayout(false);
- ResumeLayout(false);
- }

110

- [STAThread]
- static void Main() {
- Directory.SetCurrentDirectory(@"..\..\recipes\");

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=148

REFACTORING FOR TESTING 149

- Application.Run(new Recipes());
115 }

-

- private void exitButton_Click(object sender,
- System.EventArgs e) {
- Application.Exit();

120 }
-

- private void searchButton_Click(object sender,
- System.EventArgs e) {
- String toMatch = "*" + titleText.Text + "*";

125

- try {
- string [] matchingFiles = Directory.GetFiles(@".", toMatch);
- searchList.DataSource = matchingFiles;
- }

130 catch (Exception error) {
- statusBar.Text = error.Message;
- }
- }
-

135 private void

- searchList_SelectedIndexChanged(object sender,
- System.EventArgs e) {
- string file = (string)searchList.SelectedItem;
- string line;

140 char [] delim = new char[] { ’=’ };
-

- statusBar.Text = file;
-

- using (StreamReader reader =
145 new StreamReader(file)) {

- while ((line = reader.ReadLine()) != null) {
- string [] parts = line.Split(delim, 2);
- switch (parts[0]) {
- case "NAME":

150 titleText.Text = parts[1];
- break;
- case "INGREDIENTS":
- try {
- int count = Int32.Parse(parts[1]);

155 ingredientsList.Items.Clear();
- for (int i = 0; i < count; i++)
- ingredientsList.Items.Add(reader.ReadLine());
- }
- catch (Exception error) {

160 statusBar.Text = "Bad ingredient count: " +
- error.Message;
- return;
- }
- break;

165 default:
- statusBar.Text = "Invalid recipe line: " + line;
- return;
- }
- }

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=149

REFACTORING FOR TESTING 150

170 }
- saveButton.Enabled = false;
- }
-

- private void removeButton_Click(object sender,
175 System.EventArgs e) {

- int index = ingredientsList.SelectedIndex;
- if (index >= 0) {
- statusBar.Text = "Removed " +
- ingredientsList.SelectedItem;

180 ingredientsList.Items.RemoveAt(index);
- saveButton.Enabled = true;
- }
- }
-

185 private void addButton_Click(object sender,
- System.EventArgs e) {
- string newIngredient = ingredientsText.Text;
- if (newIngredient.Length > 0) {
- ingredientsList.Items.Add(newIngredient);

190 saveButton.Enabled = true;
- }
- }
-

- private void

195 ingredientsList_SelectedIndexChanged(object sender,
- System.EventArgs e) {
- int index = ingredientsList.SelectedIndex;
- if (index < 0)
- removeButton.Enabled = false;

200 else {
- removeButton.Text = "Remove " +
- ingredientsList.SelectedItem;
- removeButton.Enabled = true;
- }

205 }
-

- private void saveButton_Click(object sender,
- System.EventArgs e) {
- string fileName = titleText.Text + ".txt";

210 ICollection items = ingredientsList.Items;
- using (StreamWriter file =
- new StreamWriter(fileName, false)) {
- file.WriteLine("NAME={0}", titleText.Text);
- file.WriteLine("INGREDIENTS={0}", items.Count);

215 foreach (string line in items) {
- file.WriteLine(line);
- }
- }
- statusBar.Text = "Saved " + fileName;

220 }
- } R

e
c

ip
e

s.
c

s

We clearly need to improve this code. Let’s begin by making a

separate object to hold a recipe, so that we can construct test

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=150

REFACTORING FOR TESTING 151

recipe data easily and toss it back and forth to the screen,

disk, network, or wherever. This is just a simple data holder,

with accessors for the data members.

Line 1 using System;
- using System.Collections.Generic;
- using System.Collections.ObjectModel;
-

5 public class Recipe
- {
- protected string name;
- protected List<string> ingredients;
-

10 public Recipe()
- {
- name = string.Empty;
- ingredients = new List<string>();
- }

15

- public Recipe(Recipe another)
- {
- name = another.name;
- ingredients = new List<string>(another.ingredients);

20 }
-

- public string Name
- {
- get { return name; }

25 set { name = value; }
- }
-

- public ReadOnlyCollection<string> Ingredients
- {

30 get
- {
- return
- new ReadOnlyCollection<string>(ingredients);
- }

35 }
-

- public void AddIngredient(string ingredient)
- {
- ingredients.Add(ingredient);

40 }
- } R

e
c

ip
e

.c
s

Next, we need to pull the code out from the original Recipes

class to save and load a file to disk.

To help separate file I/O from any other kind of I/O, we’ll per-

form the file I/O in a helper class that uses Recipe. We want

to take out all of the GUI widget references from the original

source code, and use instance member variables instead.

Line 1 public class RecipeFile

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=151

REFACTORING FOR TESTING 152

- {
- public Recipe Load(Stream savedRecipe)
- {
5 Recipe recipe = new Recipe();
- string line;
- char[] delim = new char[] { ’=’ };
-

- using (StreamReader reader = new StreamReader(savedRecipe))
10 {

- while ((line = reader.ReadLine()) != null)
- {
- string[] parts = line.Split(delim, 2);
-

15 switch (parts[0]) {
- case "TITLE":
- {
- recipe.Name = parts[1];
- break;

20 }
- case "INGREDIENTS":
- {
- try
- {

25 int count = Int32.Parse(parts[1]);
- for (int i = 0; i < count; i++)
- recipe.AddIngredient(reader.ReadLine());
- }
- catch (Exception error)

30 {
- throw new RecipeFormatException(
- "Bad ingredient count: " + error.Message);
- }
- break;

35 }
- }
- }
- }
-

40 return recipe;
- }
-

- public void Save(Stream savedRecipe, Recipe recipe)
- {

45 using (StreamWriter file =
- new StreamWriter(savedRecipe))
- {
- file.WriteLine("NAME={0}", recipe.Name);
- file.WriteLine(

50 "INGREDIENTS={0}",
- recipe.Ingredients.Count
-);
-

- foreach (string line in recipe.Ingredients)
55 {

- file.WriteLine(line);
- }

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=152

REFACTORING FOR TESTING 153

- }
- }

60 }

R
e

c
ip

e
Fi

le
.c

s

Now we’re in a position where we can write a genuine test case

that will test reading and writing to disk, without using any

GUI code.

Line 1 using NUnit.Framework;
- using NUnit.Framework.SyntaxHelpers;
- using System;
- using System.Collections.Generic;
5 using System.IO;
-

- [TestFixture]
- public class RecipeTest
- {

10 const string CHEESEBURGER =
- "Cheeseburger";
- const string SIRLOIN =
- "1/4 lb ground sirloin";
- const string CHEESE =

15 "3 slices Vermont cheddar cheese";
- const string BACON =
- "2 slices maple-cured bacon";
- const string RECIPE_FILE_NAME =
- "recipe.save";

20

- [TearDown]
- public void TearDown()
- {
- if (File.Exists(RECIPE_FILE_NAME))

25 {
- File.Delete(RECIPE_FILE_NAME);
- }
- }
-

30 [Test]
- public void SaveAndRestore()
- {
- Recipe recipe = new Recipe();
- recipe.Name = CHEESEBURGER;

35 recipe.AddIngredient(SIRLOIN);
- recipe.AddIngredient(CHEESE);
- recipe.AddIngredient(BACON);
-

- Stream recipeStream;
40 RecipeFile filer;

- using (recipeStream =
- File.OpenWrite(RECIPE_FILE_NAME))
- {
- filer = new RecipeFile();

45 filer.Save(recipeStream, recipe);
- }

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=153

REFACTORING FOR TESTING 154

-

- // Now get it back
- using (recipeStream =

50 File.OpenRead(RECIPE_FILE_NAME))
- {
- filer = new RecipeFile();
- recipe = filer.Load(recipeStream);
- }

55

- Assert.That(recipe.Ingredients.Count, Is.EqualTo(3));
-

- Assert.That(
- recipe.Name,

60 Is.EqualTo(CHEESEBURGER)
-);
-

- Assert.That(
- recipe.Ingredients[0],

65 Is.EqualTo(SIRLOIN)
-);
-

- Assert.That(
- recipe.Ingredients[1],

70 Is.EqualTo(CHEESE)
-);
-

- Assert.That(
- recipe.Ingredients[2],

75 Is.EqualTo(BACON)
-);
- }
- } R

e
c

ip
e

Te
st

.c
s

At line 11 we’ll declare some constant strings for testing. Then

we make a new, empty object and populate it with the test

data beginning at line 34. We could just pass literal strings di-

rectly into the object instead, and not bother with const data

members, but since we’ll need to check the results against

these strings, it makes sense to put them in common con-

stants that we can reference from both spots.

With a Recipe data object now fully populated, we’ll call the

Save() method to write the recipe to disk at line 45. Now we

can make a brand-new Recipe object, and ask the helper to

load it from that same file at line 53.

With the restored object in hand, we can now proceed to run

a whole bunch of asserts to make sure that the test data we

set in the rec object has been restored in the rec2 object.

Finally, at line 26 we play the part of a good neighbor and

delete the temporary file we used for the test. Note that we

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=154

REFACTORING FOR TESTING 155

use a finally clause to ensure that the file gets deleted, even

if one of our assertions fails.

Now we can run the unit test in the usual fashion to make

sure that the code is reading and writing to disk okay.

STOPTry running this example before reading on. . .

Failures:
1) RecipeTest.SaveAndRestore :

Expected string length 12 but was 0.

Strings differ at index 0.

Expected: "Cheeseburger"

But was: <string.Empty>

-----------^

at RecipeTest.SaveAndRestore() in RecipeTest.cs:58

Whoops! Seems that wasn’t working as well as we thought—

we’re not getting the name line of the recipe back. When we

save the file out in RecipeFile.cs, the code is using the key

string "NAME" to identify the field, but when we read it back

in (line 19 of Load()), it’s trying to use the string "TITLE".

That’s just not going to work. We can easily change that to

read "NAME", to match the key used for the save, but stop

and ask yourself the critical question:

Could this happen anywhere else in the code?

Using strings as keys is a fine idea, but it does open the door

to introduce errors due to misspellings or inconsistent naming

as we’ve seen here. So perhaps this failing test is trying to tell

you something more—perhaps you should refactor the code

and pull out those literal strings into constants. The class

then looks like this:

Line 1 public class RecipeFile
- {
- const string NAME_TOKEN = "NAME";
- const string INGREDIENTS_TOKEN = "INGREDIENTS";
5

- public Recipe Load(Stream savedRecipe)
- {
- Recipe recipe = new Recipe();
- string line;

10 char[] delim = new char[] { ’=’ };
-

- using (StreamReader reader = new StreamReader(savedRecipe))
- {

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=155

REFACTORING FOR TESTING 156

- while ((line = reader.ReadLine()) != null)
15 {

- string[] parts = line.Split(delim, 2);
-

- switch (parts[0]) {
- case NAME_TOKEN:

20 {
- recipe.Name = parts[1];
- break;
- }
- case INGREDIENTS_TOKEN:

25 {
- try
- {
- int count = Int32.Parse(parts[1]);
- for (int i = 0; i < count; i++)

30 recipe.AddIngredient(reader.ReadLine());
- }
- catch (Exception error)
- {
- throw new RecipeFormatException(

35 "Bad ingredient count: " + error.Message);
- }
- break;
- }
- }

40 }
- }
-

- return recipe;
- }

45

- public void Save(Stream savedRecipe, Recipe recipe)
- {
- using (StreamWriter file =
- new StreamWriter(savedRecipe))

50 {
- file.WriteLine(
- "{0}={1}",
- NAME_TOKEN,
- recipe.Name

55);
-

- file.WriteLine(
- "{0}={1}",
- INGREDIENTS_TOKEN,

60 recipe.Ingredients.Count
-);
-

- foreach (string line in recipe.Ingredients)
- {

65 file.WriteLine(line);
- }
- }
- }

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=156

REFACTORING FOR TESTING 157

- }

R
e

c
ip

e
Fi

le
.c

s

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=157

REFACTORING FOR TESTING 158

Recipe

name

ingredients

RecipeGUI

ShowGUI()

RecipeFile

Load()

Save()

Figure 9.3: Refactored Recipes Static Class Diagram

We’ve improved the original program a lot with these simple

changes. In order to test the file I/O, we:

• Made Recipe a first-class object

• Moved file I/O routines out of the GUI and into Recipe-

File to narrow the class’ responsibility.

• Pulled literals into constants to avoid bugs from typos

and reduce duplication.

Finally, now that we have unit tests that provide the basic ca-

pabilities of a Recipe, we need to re-integrate the new Recipe

class into the GUI itself and tend to the file I/O. We’d like to

end up with something like Figure 9.3.

Now RecipeGUI holds an object of type Recipe, and uses

the helper class RecipeFile to read and write recipes to

disk. When the user presses the save button, the GUI will

set values from the widgets in the Recipe object and call

RecipeFile.Save(). When a new recipe is loaded in, the GUI

will get the proper values from the Recipe object returned

from RecipeFile.Load().

Testing a GUI can be very hard, but usually because the code

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=158

TESTING THE CLASS INVARIANT 159

is written in such a way as to make it difficult. This kind

of code isn’t uncommon, either—this is what happens when

you use the WinForms designer to generate code and then

just integrate logic directly into the generated method’s code.

It can be tempting to use something like NUnitForms to test

this kind of logic, but if we went that route our tests would

end up long and complicated.

By separating the pure GUI-related code from the actual logic

of the application, you can easily add and test business fea-

tures without having to worry about how you’re going to weave

it into the GUI code.

The main GUI class RecipeGUI (formerly known as Recipes)

should now contain nothing but GUI-oriented code: widgets,

callbacks, and so on. Thus, all of the “business logic” and file

I/O can be in non-GUI, fully testable classes.

And we’ve got a clean design as an added bonus.

9.3 Testing the Class Invariant

Another way to improve the design of a class is by defining

and verifying the “class invariant.”1

A class invariant is an assertion, or some set of assertions,

about objects of a class. For an object to be valid, all of these

assertions must be true. They cannot vary.

For instance, a class that implements a sorted list may have

the invariant that its contents are in sorted order. That means

that no matter what else happens, no matter what methods

are called, the list must always be in sorted order—at least as

viewed from outside the object. Within a method, of course,

the invariant may be momentarily violated as the class per-

forms whatever housekeeping is necessary. But by the time

the method returns, or the object is otherwise available for

use (as in a multi-threaded environment), the invariant must

hold true or else it indicates a bug.

1For more information on pre-conditions, post-conditions and invariants,

see [Mey97].

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=159

TESTING THE CLASS INVARIANT 160

That means it’s something you could check for as part of every

unit test for this class.

The invariant is generally an artifact of implementation: inter-

nal counters, the fact that certain member variables are pop-

ulated, and so on. The invariant is not the place to check for

user input validation or anything of that sort. When writing

tests, you want to test just your one thing, but at the same

time you want to make sure the overall state of the class is

consistent—you want to make sure you have not inflicted any

collateral damage.

Here are some possible areas where class invariants might

apply.

Structural

The most common invariants are structural in nature. That

is, they refer to structural properties of data. For instance, in

an order-entry system you might have invariants such as:

• Every line item must belong to an order

• Every order must have one or more line items

When working with arrays of data, you’ll typically maintain

a member variable that acts as an index into the array. The

invariants on that index would include:

• index must be >= 0

• index must be < array length

You want to check the invariant if any of these conditions

are likely to break. Suppose you are performing some sort of

calculation on the index into an array; you’d want to check the

invariant throughout your unit tests to make sure the class

is never in an inconsistent state. We showed this in the stack

class example on page 77.

Structural errors will usually cause the program to throw an

exception and/or terminate abruptly. For that matter, so will

failing the invariant check. The difference is that when the

invariant is violated, you know about it right away—right at

the scene of the crime. You’ll probably also know exactly what

condition was violated. Without the invariant, the failure may

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=160

TEST -DRIVEN DESIGN 161

occur far from the original bug, and backtracking to the cause

might take you anywhere from a few minutes to a few days.

More importantly, checking the invariant makes sure that you

aren’t passing the tests based just on luck. It may be that

there’s a bug that the tests aren’t catching that will blow up

under real conditions. The invariant might help you catch

that early, even if an explicit test does not.

Mathematical

Other constraints are more mathematical in nature. Instead

of verifying the physical nature of data structures, you may

need to consider the logical model. For example:

• Debits and credits on a bank account match the balance.

• Amounts measured in different units match after con-

version (an especially popular issue with spacecraft).

This starts to sound a lot like the boundary conditions we

discussed earlier, and in a way they are. The difference is

that an invariant must always be true for the entire visible

state of a class. It’s not just a fleeting condition; it’s always

true.

Data Consistency

Often times an object may present the same data in different

ways—a list of items in a shopping cart, the total amount of

the sale, and the total number of items in the cart are closely

related. From a list of items with details, you can derive the

other two figures. It must be an invariant that these figures

are consistent. If not, then there’s a bug.

9.4 Test-Driven Design

Test-driven development is a valuable technique where you

always write the tests themselves before writing the methods

that they test [wCA04]. As a nice side benefit of this style of

working, you can enjoy “test-driven design” and significantly

improve the design of your interfaces.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=161

TEST -DRIVEN DESIGN 162

You’ll get better interfaces (or API’s) because you are “eating

your own dog food,” as the saying goes—you are able to apply

feedback to improve the design.

That is, by writing the tests first, you have now placed yourself

in the role of a user of your code, instead of the implementor of

your code. From this perspective, you can usually get a much

better sense of how an interface will really be used, and might

see opportunities to improve its design.

For example, suppose you’re writing a routine that does some

special formatting for printed pages. There are a bunch of

dimensions that need to be specified, so you code up the first

version like this:

AddCropMarks(PSStream str, double paper_width,

double paper_height,

double body_width,

double body_height);

Then as you start to write the tests (based on real-world data)

you notice that a pattern emerges from the test code:

public Process() {
xxx xx xxxxx xxx xx x xx xxx xxx xxxx xx xx;
x xx x xxx xxxx xx xxx xx xxxxx xxxx;

AddCropMarks(str, 8.5, 11.0, 6.0, 8.5);
xx xxx x xxx xxx xx x xxx xxx xxx xxx xx xxx;
x xxx xxx xxxx x xxx xxx xxx xxxx xx xxx xx;

AddCropMarks(str, 8.5, 11.0, 6.0, 8.5);
xx xx xxxx xx xx xxx xxx xxx xxxx xx xx xx xx;
x xx xx x xxxx xxx x xxxx xx xx xx xxx xxx xx;

AddCropMarks(str, 8.5, 11.0, 6.0, 8.5);
xxx xx xxxxxxx xxx xxx xxxxx x xxx xxxx xx xxxxxx;
xx x xxx xxxx xxxx xxx xxxx xxxx xx x x xx xx;

AddCropMarks(str, 5.0, 7.0, 4.0, 5.5);
xx xxx xxx xx x xxx xxx xxx xxxx xx xx xx xxx xx;
xxx xx xxxxx xxx xx xxx x xxx xxxx xx xx xx xxx;

AddCropMarks(str, 5.0, 7.0, 4.0, 5.5);
xx xx xxxxx xx x xx xxx xxx xxxx xx xx;
x xxx x xxx xxxx xx xx xxx xxxx xx;

}

As it turns out, there are only a handful of common paper

sizes in use, but you still need to allow for odd-ball sizes as

necessary. So the first thing to do—just to make the tests

easier, of course—is to factor out the size specification into a

separate object.

PaperSpec standardPaper1 = new PaperSpec(8.5, 11.0,

6.0, 8.5);

PaperSpec standardPaper2 = new PaperSpec(5.0, 7.0,

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=162

TESTING INVALID PARAMETERS 163

4.0, 5.5);

xxx xx xxxxxxx xxx xxx xxxxx x xxx xxxx xx xxxxxx;
xx x xxx xxxx xxxx xxx xxxx xxxx xx x x xx xx;

AddCropMarks(str, standardPaper1);

AddCropMarks(str, standardPaper1);
xx xxx xxx xx x xxx xxx xxx xxxx xx xx xx xxx xx;
xxx xx xxxxx xxx xx xxx x xxx xxxx xx xx xx xxx;

AddCropMarks(str, standardPaper2);

Now the tests are much cleaner and easier to follow, and the

application code that uses this will be cleaner as well.

Since these standard paper sizes don’t vary, we can make

a factory class that will encapsulate the creation of all the

standard paper sizes.

public class StandardPaperFactory {

public static PaperSpec LetterInstance;

public static PaperSpec A4Instance;

public static PaperSpec LegalInstance;
xxxxxx xxxxxx xxxxxxxxx xxxxxxxxxxx;
xxxxxx xxxxxx xxxxxxxxx xxxxxxxxxxx;

}

By making the tests cleaner and easier to write, you will make

the real code cleaner and easier to write as well.

Try it

Exercises

7. Design an interest calculator that calculates the amount of in- Answer
on 201terest based on the number of working days in-between two

dates. Use test-first design, and take it one step at a time.

9.5 Testing Invalid Parameters

One question that comes up when folks first start testing is:

“Do I have to test whether my class validates it parameters?”

The answer, in best consultant fashion, is “it depends. . . .”

Is your class supposed to validate its parameters? If so, then

yes, you need to test that this functionality is correct. But

there’s a larger question here: Who’s responsible for validat-

ing input data?

In many systems, the answer is mixed, or haphazard at best.

You can’t really trust that any other part of the system has

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=163

TESTING INVALID PARAMETERS 164

checked the input data, so you have to check it yourself—or at

least, that aspect of the input data that particularly concerns

you. In effect, the data ends up being checked by everyone

and no one. Besides being a grotesque violation of the DRY

principle [HT00], it wastes a lot of time and energy—and we

typically don’t have that much extra to waste.

In a well-designed system, you establish up-front the parts of

the system that need to perform validation, and localize those

to a small and well-known part of the system.

So the first question you should ask about a system is, “who

is supposed to check the validity of input data?”

Generally we find the easiest rule to adopt is the “keep the

barbarians out at the gate” approach. Check input at the

boundaries of the system, and you won’t have to duplicate

those tests inside the system. Internal components can trust

that if the data has made it this far into the system, then it

must be okay.

It’s sort of like a hospital operating room or industrial “clean

room” approach. You undergo elaborate cleaning rituals be-

fore you—or any tools or materials—can enter the room, but

once there you are assured of a sterile field. If the field be-

comes contaminated, it’s a major catastrophe; you have to

re-sterilize the whole environment.

Any part of the software system that is outward-facing (a UI,

or interface to another system) needs to be robust, and not

allow any incorrect or unvalidated data through. What defines

“correct” or valid data should be part of specification you’re

testing against.

What does any of this have to do with unit testing?

It makes a difference with regard to what you need to test

against. As we mentioned earlier, if it isn’t your code’s respon-

sibility to check for input data problems, then don’t waste

time checking for it. If it is your responsibility, then you need

to be extra vigilant—because now the rest of the system is

potentially relying on you, and you alone.

But that’s okay. You’ve got unit tests.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=164

Chapter 10

GUI Testing

Now that we’ve separated out the logic from our UI code, what

is there left to test in the GUI? And how is this a “unit test”

when the GUI is involved?

10.1 Unit testing WinForms

We’re going to see how this works in the real world using

the NUnitForms framework, which is an extension of NUnit

(http://nunitforms.sourceforge.net). Alas, NUnitForms

uses Win32 native calls to work its magic and therefore

doesn’t currently work under Mono. Because NUnitForms

itself depends upon NUnit, we may find that the version of

Andy’s Rant on GUI Testing

“Some people are convinced that they must com-
pare bitmaps to do GUI testing. Well, that is simply
the most antiquated, 1970’s bit of thinking I can imag-
ine. For crying out loud, I wrote a GUI tester based on
X11 back in 1992 or so that was object-oriented (i.e., it
worked with the ’OK’ button object on a form, place-
ment was irrelevant), scriptable, could do live record
and playback and then later editing of the event, test
composition, etc. And that was some 15 years ago.”

http://nunitforms.sourceforge.net

UNIT TESTING WINFORMS 166

nunit.framework.dll we are referencing during compilation of

our code isn’t the same version as the one NUnitForms was

built against. (The compiler will actually warn us of this.)

Don’t panic, we’ll talk more about this later in the chapter.

Let’s get started. There’s no magic here; remember that unit

tests are just code, and controls (forms included) are just ob-

jects. For instance, we can create and use additional con-

structors, and not just be stuck with the default empty con-

structor. If a Form requires a Recipe object to display, for

example, then the Form should have a constructor that takes

a Recipe parameter.

Now we’ve got a first easy unit test that doesn’t require

NUnitForms—pass null in for the parameter and expect an

ArgumentNullException:

[TestFixture]

public class RecipeViewFormTests

{

[Test]

[ExpectedException(typeof(ArgumentNullException))]

public void NullRecipe()

{

new RecipeViewForm(null);

}
}

What can we test that’s actually GUI-related? The

RecipeViewForm has two buttons: Save and Cancel. You

want to make sure that the Save button calls the Save()

method on the Recipe object that is passed to it. (We’re only

concerned with the GUI functionality of the Save button—the

logic behind the Recipe.Save() method is tested elsewhere.)

We’ll use mock objects to make our lives easier.

using NUnit.Framework;

using NUnit.Framework.SyntaxHelpers;

using NUnit.Extensions.Forms;

using RecipeViewer;

using System;

namespace RecipeViewer.Tests

{

public class FakeRecipe : Recipe

{
UInt32 saveCalled = 0;

public UInt32 SaveCalled

{

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=166

UNIT TESTING WINFORMS 167

get { return saveCalled; }

}

public override Save()

{

saveCalled++;

}

}

[TestFixture]

public class RecipeViewFormTests

{

[Test]

public void Save()

{
FakeRecipe recipe = new FakeRecipe();

RecipeViewForm recipeView =

new RecipeViewForm(recipe as Recipe);

recipeView.Show();

ButtonTester saveButton = new ButtonTester("Save");

saveButton.Click();

Assert.That(recipe.SaveCalled, Is.EqualTo(1));

}

}
}

First, we create a fake object for Recipe which tracks the

number of calls to the Save() method. Then, we make a new

RecipeViewControl and give it our FakeRecipe object, add

the control to a form, and finally call the Show() method on

the form. When we run the test, the form with the control will

pop up quickly (don’t blink or you’ll miss it).

Next, we create a ButtonTester for the Save button. Note

that the ButtonTester isn’t based on the contents of the But-

ton’s Text property, but rather the Name property. Make sure

you give these sane names and not use the default ones gen-

erated by the designer.

We then call the Click() method on the ButtonTester, and

ask the fake Recipe how many times Save() was called. We

want to assert that it was called only once.

Pretty cool, huh? By faking the model, we kept the unit test

very focused, even though it was testing the GUI. We could

also use one of the mock object frameworks discussed in

Chapter 6.

Here’s another example we want to make sure works: press-

ing the Cancel button doesn’t save the recipe.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=167

UNIT TESTING WINFORMS 168

[Test]

public void Cancel()

{

FakeRecipe recipe = new FakeRecipe();

RecipeViewControl recipeView =

new RecipeViewControl(recipe as Recipe);

Form form = new Form();

form.Add(recipeView);

form.Show();

ButtonTester cancelButton = new ButtonTester("Cancel");
cancelButton.Click();

Assert.That(recipe.SaveCalled, Is.EqualTo(0));

}

We introduced a little duplication here with the previous test,

so it’s time to refactor a bit. First, extract recipe and

recipeView to be class-level fields; then extract the intial-

ization of those fields into SetUp() so they’re fresh for each

test method. We’ve eliminated duplicate code, so we’re ready

to proceed.

Mocking the User

NUnitForms can also simulate a user changing fields in the

GUI via the keyboard, and all other kinds of things, relatively

easily. There’s only one major exception and that’s modal

dialogs.

[TestFixture]

public class LoginModalDialogTest : NUnitFormTest

{

const string PASSWORD_FAILURE = "Password Failure";

[Test]

public void PasswordFailureClickOK()

{

ExpectModal(PASSWORD_FAILURE, "PasswordFailureOkHan-
dler");

MessageBox.Show("Try again?", PASSWORD_FAILURE);

}

public void MessageBoxOkHandler()

{
MessageBoxTester messageBox =

new MessageBoxTester(PASSWORD_FAILURE);

Assert.That(

messageBox.Title,

Is.EqualTo(PASSWORD_FAILURE)

);

messageBox.ClickOk();

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=168

UNIT TESTING BEYOND WINDOWS FORMS 169

}
}

Modal dialogs are interesting because they suspend the pro-

gram until they’re dismissed. Thankfully, NUnitForms has a

way to deal with that, using the ExpectModal method in the

NUnitFormTest class. To use it (or any other NUnitForms

methods), we derive our fixture from NUnitFormTest and call

ExpectModal, passing the name of the caption (aka title) of

the modal dialog. When a modal dialog is displayed that has

the specified caption, the handler method is called. So in our

handler method, we do our button clicks, assertions, and so

on, and then dismiss the dialog as a user would. Then our

tests continue on their merry way.

10.2 Unit testing beyond Windows Forms

What if we’re using a UI library that isn’t Windows Forms?

This isn’t unthinkable, and it certainly isn’t untestable either.

There are some nuances, but many of the concepts presented

thus far apply equally. We just won’t have a nice framework

like NUnitForms to help us along.

For other common GUI toolkits, like Qt# and Gtk#, there is

some variance in the ease of testing. Qt# is a .NET binding

to the open source C++ native library, Qt. Qt 4.1 and above

has a built-in unit testing framework called QTestLib. Gtk# is

also a wrapper (in essence), but neither the wrapper nor the

native library has a unit testing framework associated with it

as of the time of this writing.

What about custom GUIs, like ones that are 3D?1 That turns

out to be easier in some cases, because we have more control

over the design and can make it easy to test.

Most 3D applications use a scene graph, which is a tree of

nodes where the nodes in the tree represent things to be

drawn in 3D space. The nodes know their X, Y, and Z (depth)

coordinates, and their length along those planes. A visitor

class visits each node in the scene graph and is responsible

1For instance, a C# wrapper around OpenGL, like Tao:

http://www.taoframework.com

http://www.taoframework.com
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=169

UNIT TESTING BEYOND WINDOWS FORMS 170

Testing code that runs on the GPU

Thanks to Ryan Dy, a programmer on some of Matt’s
favorite XBox games, for this real-world detail:

Sometimes there are transformations that aren’t done
on the CPU, they’re done on the GPU via shader pro-
grams. In that case, we need to expose the shader
variables to our test code running on the CPU so we
can make assertions. To accomplish that, we would
write a shader program that would expose the val-
ues we need to assert against in our test. This is a
common method for debugging shader code, and
it also allows us to make sure our shader perform simi-
larly across different hardware implementations in an
automated fashion.

for things like rendering the node in the 3D space or passing

messages such as mouse clicks or keyboard interactions.

It’s relatively straightforward to see where testing could be

introduced in this common 3D scenario. First, we may want

to test the nodes themselves, but they are usually data-only—

all the behaviour generally goes into the visitor2 objects that

apply transformations to the data contained in the nodes.

Next, we could test the scene graph collection and make sure

it is self-balancing based upon Z-order (or whatever other

properties we expect). Last, the visitor classes themselves

can be unit tested if they are well-encapsulated and loosely

coupled with the rest of the design.

This is a lot of talk to be sure; how can you actually code up

a test that makes sure that our layout algorithm fits all the

nodes onto the rendered screen? We might sketch out a test

that looks like this:

Missing: [Code to be written]

What’s this magical method referenced? It’s sometimes easier

2Fun fact: Scene graphs are one of the few places that the Visitor design

pattern is commonly applied.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=170

WEB UIS 171

to write the test as you’d like it to read, then work backward

and fill in the missing pieces.

Now that we have the test as we’d like it to read, here’s the

code for the aforementioned magical method:

Missing: [Code to be written]

10.3 Web UIs

An entire book could be written about testing web-based UIs.

We’ll touch on it briefly here because many people are un-

der the impression this is not possible or requires expen-

sive commercial tools. First, many “Web 2.0” applications

have a great deal of their functionality in JavaScript (aka EC-

MAScript). Unlike the dark ages of JavaScript, it is now an

open ECMA standard with frameworks available that make

object-orientation and unit testing a snap. In many modern

applications, much of the important end-user functionality is

on the client-side in JavaScript. The server-side code mostly

accepts AJAX requests that either retrieve or store data in the

database with some data validation and logging.

As such, unit testing the JavaScript is the first step. We

recommend JsUnit,3 which provides a framework and a test-

runner that can run within most modern browsers. You can

assert that your JavaScript code is having the correct effect

on specific DOM elements, such as adding or removing styles,

child nodes, or whatever. This allows us to find and test for

bugs that would normally have to be done manually with vi-

sual inspection.

We also recommend using a framework like Prototype or

JQuery that provide various syntactic and functional helpers

that make JavaScript a little easier to code and test. There

are all sorts of nifty AJAX libraries and frameworks out there,

but we should make sure that they don’t hinder our ability to

unit test functionality. See the JsUnit web site for examples—

many of the concepts from this book can be applied equally

between C#, JavaScript, and other languages.

3http://www.jsunit.net

http://www.jsunit.net
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=171

WEB UIS 172

To test web applications beyond JavaScript and our server-

side objects, there is a free, open source tool called Sele-

nium.4 With Selenium, you can write code that drives any

of the mainstream browsers on the operating system of your

choice. It works by running a server that launches a browser,

which accepts commands via a socket and translates those

commands into browser clicks and keyboard input.

This means we can write NUnit tests that look like this:

[Test]

public void AnchoviesNotAvailableInMontana()

{

ISelenium selenium =
new DefaultSelenium(

"localhost", 4444, "firefox2",

"http://localhost:56789/OrderPizza.aspx"

);

selenium.Select(INGREDIENT_DROPDOWN_ID, "anchovies");

selenium.Type(STATE_TEXT_ID, "montana");

selenium.Click("submit");

selenium.WaitForCondition(
"selenium.isTextPresent(’Not Available’)"

);

}

We instantiate a new selenium controller, which starts the

selenium server. This in turn starts the browser. We tell the

selenium controller to select "anchovies" from a list control.

Note that the location and style of that control don’t really

matter—we’re just working off the HTML IDs. Because we

have stored the HTML IDs into a variable, we only have to

change them in one place should the HTML ID in the user

interface change. Then, we tell selenium to type ’montana’ in

the input control. Next, we tell selenium to click a button with

the HTML ID of ’submit’. Last, we wait for the validator (or

whatever else) text to appear. If the condition isn’t met by the

default timeout,5 the test will fail. One interesting side note

is that selenium.isTextPresent is a snippet of JavaScript

that will tell Selenium what to do on the browser-side.

Selenium tests are like any other tests; you tend to do the

same things over and over. Being the pragmatic programmers

that we are, we don’t stand for duplication. When we see

4http://www.openqa.org/selenium/index.html
560 seconds in Selenium 0.9

http://www.openqa.org/selenium/index.html
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=172

WEB UIS 173

Joe Asks. . .

Aren’t Selenium tests more like system tests?

Yes, Selenium tests aren’t really unit tests, even though
we are driving the browser in NUnit. ASP.NET doesn’t
have a good way to isolate the various handlers for
testing as of the time of this writing.a As such we have
a multi-lateral approach to get much of the same
benefit. The ASP.NET pages and controls should be a
very thin layer on top of other, more easily testable,
objects—just like for WinForms or any other widget li-
brary. Selenium then helps us test the interaction be-
tween the web controls and those underlying model
objects. It is slower, mainly due to the overhead of
starting and running a real browser, but it is definitely
better than manual web UI testing. When using a sys-
tem testing tool like Selenium, make sure to exclude
it from your code coverage measurements. Your unit
tests alone should provide high levels of code cov-
erage; measuring the coverage of system-level tests
obscures that data.

aWebWork and Rails do, which are Java- and Ruby-based re-
spectively.

it, we refactor by extracting methods, extracting a class, and

performing other refactorings. A very common pattern with

Selenium is to wrap the Selenium instance and delegate to

it. By doing this, you can have assertion and helper methods

tied to a project-specific Selenium object that can be shared.

namespace PizzaWeb.Test.UI

{

public class MySelenium

{

protected ISelenium selenium;

public MySelenium(string host,

int port,

string[] browsers,

string url)

{

selenium =
new DefaultSelenium(host, port, browsers, url);

}

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=173

WEB UIS 174

public Stop()

{
selenium.Stop();

}

public void waitForText(string expectedText)

{
selenium.WaitForCondition(

"selenium.isTextPresent(’" + expectedText + "’)"

);

}

}
}

Something else that often gets repeated is the creation of

the selenium instance and the closing of the browser. An-

other common pattern is to have a base class that selenium-

oriented fixtures derive from.

namespace PizzaWeb.Test.UI

{

public abstract class MySeleniumFixture

{

static final uint SELENIUM_SERVER_PORT = 56789;

protected MySelenium selenium;

[TestFixtureSetUp]

public void StartBrowser()

{
selenium = new MySelenium(

"localhost", SELENIUM_SERVER_PORT,

"firefox2", getInitialUrl()

);

}

[TestFixtureTearDown]

public void StopBrowser()

{

selenium.Stop();

}

protected abstract string getInitialUrl();

}

[TestFixture]

public class OrderPizzaTest : MySeleniumFixture

{

static final string INGREDIENT_DROPDOWN_ID = "ingredi-
ents";

static final string STATE_TEXT_ID = "state";

string getInitialUrl()

{
return "http://localhost:7890/OrderPizza.aspx";

}

[Test]

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=174

COMMAND LINE UIS 175

public void AnchoviesNotAvailableInMontana()

{
selenium.Select(

INGREDIENT_DROPDOWN_ID,

"anchovies"
);

selenium.Type(STATE_TEXT_ID, "montana");

selenium.Click("submit");

selenium.waitForText("Not Available");
}

}

}

When making the selenium instance, only one thing gener-

ally varies from test to test: the initial URL the browser loads.

To reuse the creation of the selenium instance, we extracted

it into a method and then into a base class that the test fix-

ture itself derives from. We marked that creation method with

the TestFixtureSetUp attribute so we don’t keep closing and

opening the browser for every test. Your application may need

to close the browser for each test, though, in which case we

should use SetUp and TearDown instead. The base class de-

fines the abstract method called getInitialUrl() which the

derived class must implement. When we add a new test fix-

ture for a different web page, we’ll override that method and

get the benefits of reuse.

In our example we set the default browser to ’firefox2’. If you

want to test with Internet Explorer as well, you can make

sure your tests pass under both browsers by adding “IE6” to

the third parameter of the DefaultSelenium constructor.

10.4 Command Line UIs

Before we finish talking about GUI Testing, we can’t forget

about our old friend the command line. Once again, the first

step is to make sure that our static Main() method is a thin

layer that mostly interacts with other, more easily testable,

objects. Often, argument parsing is done in a quick and dirty

fashion right in the Main() method. What do you do if there is

a bug in the command line argument parsing, and you want

to write a unit test that fails when the bug is present and

passes when it is fixed? Say you had code like this:

private static void isTracing;

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=175

COMMAND LINE UIS 176

public static void Main(string[] args)

{

if (args.Length < 1)

{

printUsage();

Environment.Exit(-1);

}

if (args[0] == "--trace")

{
isTracing = true;

}
}

There is a bug (or lack of feature, depending on your personal

outlook) where the -trace command line option is only rec-

ognized when it is the first argument. We want to unit test the

change, regardless, because text processing is one of those

areas in our experience where bugs tend to creep back in as

seemingly “safe” changes are made. One way would be to

write a test like this:

[Test]

public void TraceAsSecondArgument()

{
TextUI.Main(new String[] {"filename", "--tracing"});

Assert.That(Main.IsTracing, Is.True);

}

This test wouldn’t compile as-is—we would have to add a

static property called IsTracing to our class. If you find

yourself thinking this doesn’t feel right, we would agree with

you. Like the other UI testing paradigms we’ve discussed, we

want Main() to be a thin layer that does a little coordina-

tion between other objects. Adding a property makes it fatter

rather than thinner.

Instead, let’s first extract a method which will help highlight

some better seams along which we can extract a class that we

can then unit test.

private static bool hasTracing(string[] args)

{

return (args[0] == "--trace");

}

Now here’s something we can unit test more easily. Testing

the Main() class still feels a little weird, so let’s extract that

static method into a class called Args. Once we do that, we

can write a test like this:

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=176

GUI TESTING GOTCHAS 177

[Test]

public void TraceAsSecondArgument()

{

Args args = new Args(new string[] {"filename", "--
tracing"});

Assert.That(args.IsTracing, Is.True);

}

This example backs up Andy’s rant from the beginning of the

chapter. Unit testing most GUI code is hard only because peo-

ple think it is, not because it is that technically challenging.

Once we just approach the problem as though it is solvable

and apply those amazing programming skills we posess, it

becomes one of the more trivial issues we’ll deal with in our

professional career.

10.5 GUI Testing Gotchas

GUI testing is fairly straight-forward, save for a couple of

gotchas that we’ll discuss in this section. Don’t be scared—

knowing about these issues up front deflates their difficulty

quite a bit.

Conflicting NUnit libraries

If NUnitForms was built against a specific version of NUnit

and that differs from the version of the NUnit libraries you’re

referencing in your project, you’ll get a compiler warning

telling you as such. This usually doesn’t present a problem,

but if it does there’s an easy way to fix it.

Download the NUnitForms source code, and replace it’s NUnit

libraries with the version of NUnit you’re using. Then build

NUnitForms and store the custom build in your project’s lib/

directory. This seems like a big deal, but it’s a minor an-

noyance at worst. You’ll have to rebuild when there’s a new

NUnitForms release that you must deploy, but that’s about it.

Automated build

There’s a simple “gotcha” here worth mentioning when using

NUnitForms (or similar tools) in an automated build.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=177

GUI TESTING GOTCHAS 178

If your automated build runs as a service, you will be unable

to show any modal dialogs. Attempting to do so will result

in an exception that basically says “don’t show modal dialogs

in a service.” This is historical, and does make some sense.

Since the service doesn’t have a desktop where someone could

dismiss a modal dialog, the service would get stuck and the

machine would require a reboot. This happened enough times

with poorly written commercial applications that Microsoft

nipped it in the bud by disallowing it altogether.

There is an easy workaround, and it’s only a little messy. Start

your automated build controller from a logged-in account, via

a batch file or shell script. Then set the build machine to

auto-login on boot and run the batch file on start-up for that

user. It ends up practically the same as running the service,

but you won’t run into the aforementioned issue with modal

dialogs.

Multithreaded and Complex Controls

Now, for a more advanced gotcha.

If you’re testing a Form that contains a control that is mul-

tithreaded and does interesting things with the Win32 event

loop (such as MSHTML, the Internet Explorer HTML render-

ing control), you may find it doesn’t work correctly when you

try to unit test it. This is because the event loop doesn’t work

the same in this test runner as it does when running under

regular Windows.

You can work around this by calling Applica-

tion.DoEvents(), which will suspend your current thread

and run the message pump thread until there are no pending

Win32 events in the queue.

In the case of some unreasonably complex controls (e.g.,

MSHTML), you may have to run Application.DoEvents()

a couple of times in order for you to be able to coerce them

into behaving as they would in the real world.

You can definitely unit test most GUIs, but it is a slippery

slope that makes it easy to write only what ends up being

system tests. Testing only at the system level can sometimes

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=178

GUI TESTING GOTCHAS 179

seem much easier because you work around the need to refac-

tor the code to make it more testable. Don’t fall into that trap.

As we’ve said a couple of times before, one of the biggest val-

ues of unit testing is in making your designs better. On top

of that, many unit-level tests can usually run in the same

amount of time as a single system-level test. Don’t sell your-

self, or your project, short by taking the easier way out. Be

mindful of the balance between unit-level tests and system-

level tests.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=179

Appendix A

Extending NUnit

A.1 Writing NUnit Extensions

In the nunit.extensions framework, there is a Repeat at-

tribute:

[Test]
[Repeat (10)]

public void IntermittentFailure() {
xxx xxx xxxxxx xxxxx xxxx;

}

The Repeat attribute will, (as you may have guessed already),

repeat the same test the specified number of times. If it fails

any of those times, it won’t run the remaining times. This can

be useful for tests that are sensitive to timing or state issues

and you want to make sure you’ve shaken everything out.

Examining an Existing Attribute

We’re going to implement a new kind of attribute that test

methods can be decorated with.

We’ve seen attributes like [Test], [Category], and [Re-

peat] previously. We’re going to implement a new attribute

that will let you specify a maximum amount of time a test can

take to run. If it doesn’t complete in the expected time, the

test will fail (the test will also fail if its assertions fail, just as

in a regular test.)

WRITING NUNIT EXTENSIONS 181

You can extend NUnit by adding new attributes; let’s see how

by exploring the source code to NUnit. Download the NUnit

source code1 (if you haven’t already) and uncompress it some-

where convenient on your disk—we’ll wait.

To start exploring, we should look at something sim-

ilar to what we’re trying to accomplish. The [Re-

peat(x)] attribute shown above seems like a good place

to start. The source code for the Repeat attribute is in

src/NUnitExtensions/framework/RepeatAttribute.cs.

If you take a look, all it contains is literally the definition

for the Repeat attribute. Something else must interpret the

attribute, so let’s look for that.

If you grep the source for “RepeatAttribute”, it leads you to

src/NUnitExtensions/core/RepeatedTestDecorator.cs.

The RepeatedTestDecorator provides a couple of static

methods; the important one of interest to us right now is the

Decorate() method that takes a TestCase as a parameter

and returns a TestCase. This follows the Decorator design

pattern. The RepeatedTestDecorator’s Decorate method for

a TestCase does a couple of things; we’ll hit the highlights.

First, it ensures that the TestCase method has the RepeatAt-

tribute associated with it. If the TestCase method does not

have an associated RepeatAttribute, it skips the decoration

and just returns the TestCase as-is. If the TestCase method

does have an associated RepeatAttribute, it gets the Count

value out of the RepeatAttribute’s Count property. It then

constructs a new RepeatedTestCase with the original Test-

Case and the Count property. So, if the [Test] was marked

with [Repeat(x)], it wraps the underlying TestCase object

with a RepeatedTestCase object.

Let’s take a look at the RepeatedTestCase object in

src/NUnitExtensions/core/RepeatedTestCase.cs. It’s

pretty obvious how this works: the Run() method runs the

original, wrapped TestCase by Count number of times. Test-

CaseResult is a collection parameter for the results of the

test runs.

1http://sourceforge.net/projects/nunit

http://sourceforge.net/projects/nunit
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=181

USING NUNIT CORE ADDINS 182

Missing: Review at the unit tests for these objects.

Missing: Finish off this content

Creating a New Attribute

Missing: Finish off this content

A.2 Using NUnit Core Addins

Missing: Content for this section will be added in a later

beta.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=182

Appendix B

Gotchas

Here are some popular “gotchas,” that is, issues, problems, or

misconceptions that have popped up over and over again to

trap the unwary.

B.1 As Long As The Code Works

Some folks seem to think that it’s okay to live with broken unit

tests as long as the code itself works. Code without tests—

or code with broken tests—is broken. You just don’t know

where, or when. In this case, you’ve really got the worst of

both worlds: all that effort writing tests in the first place is

wasted, and you still have no confidence that the code is doing

what it ought.

Note that a test that has no assert statements or (mock object

verification) will count as “passed.” This is arguably a bug in

NUnit, but at any rate a test without asserts still counts as

broken.

If the tests are broken, treat it just as if the code were broken.

B.2 “Smoke” Tests

Some developers believe that a “smoke test” is good enough

for unit testing. That is, if a method makes it all the way to

the end without blowing up, then it passed.

“WORKS ON MY MACHINE” 184

You can readily identify this sort of a test: there are no asserts

within the test itself, just one big Assert.IsTrue(true) at

the end. Maybe the slightly more adventurous will have mul-

tiple Assert.IsTrue(true)’s throughout, but no more than

that. All they are testing is, “did it make it this far?”

And that’s just not enough. Without validating any data or

other behavior, all you’re doing is lulling yourself into a false

sense of security—you might think the code is tested, but it is

not.

Watch out for this style of testing, and correct it as soon as

possible. Real testing checks results. Anything else is just

wasting everyone’s time.

B.3 “Works On My Machine”

Another pathologic problem that turns up on some projects

is that old excuse, “It’s not broken, it works on my machine.”

This points to a bug that has some correlation with the envi-

ronment. When this happens, ask yourself:

• Is everything under version control?

• Is the development environment consistent on the af-

fected machines?

• Is it a genuine bug that just happens to manifest itself

on another machine (because it’s faster, or has more or

less memory, etc.)?

End users, in particular, don’t like to hear that the code works

on your machine and not theirs.

All tests must pass on all machines; otherwise the code is

broken.

B.4 Floating-Point Problems

Quite a few developers appear to have missed that one day in

class when they talked about floating-point numbers. It’s a

fact of life that there are floating point numbers that can only

be approximately represented in computer hardware. The

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=184

TESTS TAKE TOO LONG 185

computer only has so many bits to work with, so something

has to give.

This means that 1.333 + 1.333 isn’t going to equal 2.666

exactly. It will be close, but not exact. That’s why the NUnit

floating-point asserts require you to specify a tolerance along

with the desired values (see the discussion on page 35).

But still you need to be aware that “close enough” may be

deceptive at times. Your tests may be too lenient for the real

world’s requirements, for instance. Or you might puzzle at an

error message that says:

Failures:
1) TestXyz.TestMe :

expected:<1.00000000>

but was:<1.00000000>
at TestXyz.TestMe() in TestXyz.cs:line 10

“Gosh, they sure look equal to me!” But they aren’t—there

must be a difference that’s smaller than is being displayed by

the print method.

As a side note, you can get a similar problem when using

date and time types. Two dates might look equal as they are

normally displayed—but maybe the milliseconds aren’t equal.

B.5 Tests Take Too Long

Unit tests need to run fairly quickly. After all, you’ll be run-

ning them a lot. But suddenly you might notice that the tests

are taking too long. It’s slowing you down as you write tests

and code during the day.

That means it’s time to go through and look at your tests with

a fresh eye. Cull out individual tests that take longer than av-

erage to run, and group them together using the [Category]

attribute discussed on page 45.

You can run these optional, longer-running tests once a day

with the build, or when you check in, but not have to run

them every single time you change code.

Just don’t move them so far out of the way that they never get

run.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=185

TESTS KEEP BREAKING 186

B.6 Tests Keep Breaking

Some teams notice that the tests keep breaking over and over

again. Small changes to the code base suddenly break tests

all over the place, and it takes a remarkable amount of effort

to get everything working again.

This is usually a sign of excessive coupling. Test code might

be too tightly-coupled to external data, to other parts of the

system, and so on. Remember that a singleton is really just

a global variable wearing pretty clothes—if other bits of code

can muck with its state, they will, and usually when you least

expect it.

As soon as you identify this as a problem, you need to fix it.

Isolate the necessary parts of the system to make the tests

more robust, using the same techniques you would use to

minimize coupling in production code. See [HT00] for more

details on orthogonality and coupling, or [FBB+99] for infor-

mation on refactoring and design smells, and don’t forget to

use Mock Objects (Chapter 6) to decouple yourself from the

real world.

B.7 Tests Fail on Some Machines

Here’s a common nightmare scenario: all the tests run fine—

on most machines. But on certain machines they fail consis-

tently. Maybe on some machines they even fail intermittently.

What on earth could be going on? What could be different on

these different machines?

The obvious answer is differences in the version of the oper-

ating system, libraries, the C# runtime engine, the database

driver; that sort of thing. Different versions of software have

different bugs, workarounds, and features, so it’s quite possi-

ble that machines configured differently might behave differ-

ently.

But what if the machines are configured with identical soft-

ware, and you still get different results?

It might be that one machine runs a little faster than the

other, and the difference in timing reveals a race condition

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=186

TESTS PASS IN ONE TEST RUNNER, NOT THE OTHER 187

or other problem with concurrency. The same thing can show

up on single vs. multiple-processor machines.

It’s a real bug, it just happened not to have shown up before.

Track it down on the affected machine using the usual meth-

ods. Prove the bug exists on that machine as best you can,

and verify that all tests pass on all machines when you are

done.

B.8 Tests Pass in One Test Runner, Not the

Other

You may find a situation where all the tests pass for you us-

ing nunit-gui, the GUI test runner, but fail in the automated

build, which uses nunit-console. This can be an indicator

of hidden global state, circular object dependencies, or Fi-

nalizer bugs.

That last one can be especially subtle. For instance, there

was a case where the developer wrote their finalizer like it

was a C++ destructor—they were accessing the object’s fields.

But in the .NET environment, the fields may be garbage col-

lected before the Finalizer is executed. The result? An in-

termittent NullReferenceException. In this case, it only

happened in the nunit-console test runner when launched

from nant via CruiseControl.NET, aligning the stars of the

garbage collection universe just so. But once diagnosed, it

also explained seemingly random, unreproducible crashes in

the field as well.1

More likely, nunit-console and other test runners can run

tests in slightly different order, which may expose hidden de-

pendancies.

B.9 Thread state issues

Sometimes we see strange InvalidOperationException,

ThreadStateException, or COM-based exceptions get

thrown when code runs under NUnit, but not in production.

1For more on garbage collection “gotchas,” see [Sub05].

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=187

C# 2.0-SPECIFIC ISSUES 188

This can sometimes be related to the apartment-type being

multi-threaded when it should be single-threaded and nice

versa. These are usually referred to by the acronyms MTA and

STA, respectively. This is deep .NET voodoo we don’t want to

get stuck in, but there are a couple of NUnit commandline

options to try: -thread and -domain. See the NUnit docu-

mentation for more more information on these options. If you

have a burning desire to learn more, a quick perusal through

CLR via C#[Ric06] or a web search will give you more infor-

mation.

B.10 C# 2.0-specific Issues

So far, we haven’t mentioned too many things specific to C#

2.0, so how do you use NUnit on a project that uses C# 2.0?

Just as you normally would, with a couple of minor excep-

tions.

First, you’ll need to use a version of NUnit that is compiled

with a C# 2.0 compiler. There are separate packages on the

NUnit web site for .NET 1.1 and 2.0 versions. By the way, it’s

perfectly safe and okay to use the .NET 2.0-compiled NUnit

on a C# 1.1 project; the developers will just have to have .NET

2.0 or mono 1.1 or newer installed to run the tests.

Another notable thing to watch out for is the interaction of

Assert.IsNull() and Assert.IsNotNull() with Nullable

types. Nullable types, a C# 2.0 feature, allows value types

like int, DateTime, enums, or structs to have a “null” value

when it is not initialized. This feature was added so that the

language could map more closely to the way databases repre-

sent data (for more information, see [Ric06]).

If you write a test like this:

[Test]

public void NullableInt() {

int? first;

Nullable<int> second;

Assert.IsNull(first);

Assert.IsNull(second);

}

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=188

C# 2.0-SPECIFIC ISSUES 189

It will fail. The reason why is because the value isn’t liter-

ally null. The first line and second lines of code are seman-

tically identical; the question mark syntax is just some syn-

tactic sugar to make it easier to consume in C#. Looking at

the second declaration, you can see it is a struct of type Nul-

lable<T>. This will never be null.

To correctly test whether the Nullable type has a value or not,

check it’s HasValue property:

Assert.IsTrue(first.HasValue)

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=189

Appendix C

Resources

C.1 On The Web

Cruise Control .NET
⇒ http://ccnet.thoughtworks.com

CruiseControl.NET is an automated Continuous Integration server

for .NET that integrates with NAnt, NUnit, NCover, and most major

open source and proprietary version control systems.

DotGNU
⇒ http://dotgnu.org

An open source implementation of the ECMA standards upon which

C# and .NET are based. Sports C# and .NET 1.1 support as well an

optimizing JIT compiler as of this writing. Not as complete as mono,

another open source implementation.

DotNetMock
⇒ http://sourceforge.net/projects/dotnetmock

A repository for Mock Object information in the .NET environment,

as well as testing in general.

mono
⇒ http://mono-project.com

Another open source implementation of the ECMA standards upon

which C# and .NET are based. Supports C# and .NET 2.0 as well as

an optimizing JIT compiler.

NCover
⇒ http://ncover.org

A simple code coverage tool that runs from the command line and

outputs an XML file with the code coverage statistics. Requires de-

http://ccnet.thoughtworks.com
http://dotgnu.org
http://sourceforge.net/projects/dotnetmock
http://mono-project.com
http://ncover.org

ON THE WEB 191

bug information for monitored assemblies, and produces line-by-line

visit counts. Also includes a simple XSLT transform to make the out-

put readable in a browser.

NCoverExplorer
⇒ http://kiwidude.com/blog

A WinForms GUI and commandline UI for summarizing and explor-

ing the XML files that NCover emits. Also includes NAnt tasks,

stylesheets and tasks for CruiseControl.NET. Allows for failure of a

build if code coverage gathered during the build and test are below a

certain watermark.

NMock
⇒ http://nmock.org

NMock is a dynamic mock-object library for .NET.

NUnit
⇒ http://nunit.org

This xUnit-based unit testing tool for Microsoft .NET is written en-

tirely in C# and has been completely redesigned to take advantage

of many .NET language features, including custom attributes and

other reflection related capabilities. NUnit brings xUnit to all .NET

languages.

Pragmatic Programming
⇒ http://www.pragmaticprogrammer.com

Home page for Pragmatic Programming and your authors. Here you’ll

find all of the source code examples from this book, additional re-

sources, updated URLs and errata, and news on additional volumes

in this series and other resources.

SharpDevelop
⇒ http://www.sharpdevelop.net

A fully-featured and stable open-source IDE for .NET development.

Has tight integration with NAnt, NUnit, NCover, code analysis, and

source control.i

TestDriven.NET
⇒ http://www.testdriven.net

Visual-Studio integration for NUnit and NCover.

xUnit
⇒ http://www.xprogramming.com/software.htm

Unit testing frameworks for many, many different languages and en-

vironments.

http://kiwidude.com/blog
http://nmock.org
http://nunit.org
http://www.pragmaticprogrammer.com
http://www.sharpdevelop.net
http://www.testdriven.net
http://www.xprogramming.com/software.htm
http://books.pragprog.com/titles/utc2/errata/add?pdf_page=191

BIBLIOGRAPHY 192

C.2 Bibliography

[Cla04] Mike Clark. Pragmatic Project Automation. How to

Build, Deploy, and Monitor Java Applications. The

Pragmatic Programmers, LLC, Raleigh, NC, and

Dallas, TX, 2004.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William

Opdyke, and Don Roberts. Refactoring: Improv-

ing the Design of Existing Code. Addison Wesley

Longman, Reading, MA, 1999.

[Fea04] Michael Feathers. Working Effectively with Legacy

Code. Prentice Hall, Englewood Cliffs, NJ, 2004.

[HT00] Andrew Hunt and David Thomas. The Pragmatic

Programmer: From Journeyman to Master. Addi-

son-Wesley, Reading, MA, 2000.

[Mey97] Bertrand Meyer. Object-Oriented Software Con-

struction. Prentice Hall, Englewood Cliffs, NJ, sec-

ond edition, 1997.

[MFC01] Tim Mackinnon, Steve Freeman, and Philip Craig.

Endo-testing: Unit testing with mock objects.

In Giancarlo Succi and Michele Marchesi, edi-

tors, Extreme Programming Examined, chapter 17,

pages 287–302. Addison Wesley Longman, Read-

ing, MA, 2001.

[Ric06] Jeffrey Richter. CLR via C. Microsoft Press, Red-

mond, WA, second edition, 2006.

[SH06] Venkat Subramaniam and Andy Hunt. Practices of

an Agile Developer: Working in the Real World. The

Pragmatic Programmers, LLC, Raleigh, NC, and

Dallas, TX, 2006.

[Sub05] Venkat Subramaniam. .NET Gotchas. O’Reilly &

Associates, Inc, Sebastopol, CA, 2005.

[TH03] David Thomas and Andrew Hunt. Pragmatic Ver-

sion Control Using CVS. The Pragmatic Program-

mers, LLC, Raleigh, NC, and Dallas, TX, 2003.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=192

BIBLIOGRAPHY 193

[wCA04] Kent Beck with Cynthia Andres. Extreme Program-

ming Explained: Embrace Change. Addison-Wes-

ley, Reading, MA, second edition, 2004.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=193

Pragmatic Unit Testing: Summary

General Principles:

2 Test anything that might break

2 Test everything that does break

2 New code is guilty until proven innocent

2 Write at least as much test code as

production code

2 Run local tests with each compile

2 Run all tests before check-in to repository

Questions to Ask:

2 If the code ran correctly, how

would I know?

2 How am I going to test this?

2 What else can go wrong?

2 Could this same kind of problem

happen anywhere else?

What to Test: Use Your RIGHT-BICEP

2 Are the results right?

2 Are all the boundary conditions CORRECT?

2 Can you check inverse relationships?

2 Can you cross-check results using other

means?

2 Can you force error conditions to happen?

2 Are performance characteristics within

bounds?

Good tests are A TRIP

2 Automatic

2 Thorough

2 Repeatable

2 Independent

2 Professional

CORRECT Boundary Conditions

2 Conformance — Does the value conform to an expected format?

2 Ordering — Is the set of values ordered or unordered as appropriate?

2 Range — Is the value within reasonable minimum and maximum values?

2 Reference — Does the code reference anything external that isn’t under direct

control of the code itself?

2 Existence — Does the value exist? (e.g., is non-null, non-zero, present in a set, etc.)

2 Cardinality — Are there exactly enough values?

2 Time (absolute and relative) — Is everything happening in order? At the right time?

In time?

http://www.pragmaticprogrammer.com/titles/utc2

http://www.pragmaticprogrammer.com/titles/utc2

Appendix E

Answers to Exercises

Exercise 1: from page 86

A simple stack class. Push String objects onto the stack, and Pop

them off according to normal stack semantics. This class provides

the following methods:

using System;

public interface StackExercise {

/// <summary>

/// Return and remove the most recent item from

/// the top of the stack.

/// </summary>

/// <exception cref="StackEmptyException">

/// Throws exception if the stack is empty.

/// </exception>

String Pop();

/// <summary>

/// Add an item to the top of the stack.

/// </summary>

/// <param name="item">A String to push

/// on the stack</param>

void Push(String item);

/// <summary>

/// Return but do not remove the most recent

/// item from the top of the stack.

/// </summary>

/// <exception cref="StackEmptyException">

/// Throws exception if the stack is empty.

/// </exception>

String Top();

/// <summary>

/// Returns true if the stack is empty.

APPENDIX E. ANSWERS TO EXERCISES 196

/// </summary>

bool IsEmpty();

}

S
ta

c
k
E
xe

rc
is

e
.c

s

Here are some hints to get you started: what is likely to break? How

should the stack behave when it is first initialized? After it’s been

used for a while? Does it really do what it claims to do?

Answer 1:

• For a brand-new stack, IsEmpty() should be true, Top() and

Pop() should throw exceptions.

• Starting with an empty stack, call Push() to push a test string

onto the stack. Verify that Top() returns that string several

times in a row, and that IsEmpty() returns false.

• Call Pop() to remove the test string, and verify that it is the

same string.1 IsEmpty() should now be true. Call Pop() again

verify an exception is thrown.

• Now do the same test again, but this time add multiple items to

the stack. Make sure you get the right ones back, in the right

order (the most recent item added should be the one returned).

• Push a null onto the stack and Pop it; confirm you get a null

back.

• Ensure you can use the stack after it has thrown exceptions.

Exercise 2: from page 87

A shopping cart. This class lets you add, delete, and count the items

in a shopping cart.

What sort of boundary conditions might come up? Are there any im-

plicit restrictions on what you can delete? Are there any interesting

issues if the cart is empty?

public interface ShoppingCart {

/// <summary>

/// Add this many of this item to the

/// shopping cart.

/// </summary>

/// <exception cref="ArgumentOutOfRangeException">

/// </exception>

void AddItems(Item anItem, int quantity);

/// <summary>

1In this case, the Is.EqualTo() constraint isn’t good enough; you need

Is.Same() to ensure it’s the same object.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=196

APPENDIX E. ANSWERS TO EXERCISES 197

/// Delete this many of this item from the

/// shopping cart

/// </summary>

/// <exception cref="ArgumentOutOfRangeException">

/// </exception>

/// <exception cref="NoSuchItemException">

/// </exception>

void DeleteItems(Item anItem, int quantity);

/// <summary>

/// Count of all items in the cart
/// (that is, all items x qty each)

/// </summary>

int ItemCount { get; }

/// Return iterator of all items
IEnumerable GetEnumerator();

} S
h

o
p

p
in

g
C

a
rt

.c
s

Answer 2:

• Call AddItems with quantity of 0 and ItemCount should re-

main the same.

• Call DeleteItem with quantity of 0 and ItemCount should re-

main the same.

• Call AddItems with a negative quantity and it should raise an

exception.

• Call DeleteItem with a negative quantity and it should raise

an exception.

• Call AddItems and the item count should increase, whether

the item exists already or not.

• Call DeleteItem where the item doesn’t exist and it should

raise an exception.

• Call DeleteItem when there are no items in the cart and Item-

Count should remain at 0.

• Call DeleteItem where the quantity is larger than the number

of those items in the cart and it should raise an exception.

• Call GetEnumerator when there are no items in the cart and

it should return an empty iterator (i.e., it’s a real IEnumerable

object (not null) that contains no items).

• Call AddItem several times for a couple of items and verify that

contents of the cart match what was added (as reported via

GetEnumerator() and ItemCount()).

Hint: you can combine several of these asserts into a single test. For

instance, you might start with an empty cart, add 3 of an item, then

delete one of them at a time.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=197

APPENDIX E. ANSWERS TO EXERCISES 198

Exercise 3: from page 88

A fax scheduler. This code will send faxes from a specified file name

to a U.S. phone number. There is a validation requirement; a U.S.

phone number with area code must be of the form xnn-nnn-nnnn,

where x must be a digit in the range [2..9] and n can be [0..9].

The following blocks are reserved and are not currently valid area

codes: x11, x9n, 37n, 96n.

The method’s signature is:

///
/// Send the named file as a fax to the

/// given phone number.

/// <exception cref="MissingOrBadFileException">

/// </exception>

/// <exception cref="PhoneFormatException">

/// </exception>

/// <exception cref="PhoneAreaCodeException">

/// </exception>

public bool SendFax(String phone, String filename)

Given these requirements, what tests for boundary conditions can

you think of?

Answer 3:

• Phone numbers with an area code of 111, 211, up to 911, 290,

291, etc, 999, 370-379, or 960-969 should throw a Phone-

AreaCodeException.

• A phone number with too many digits (in one of each set of

number, area code, prefix, number) should throw a PhoneFor-

matException.

• A phone number with not enough digits (in one of each set)

should throw a PhoneFormatException.

• A phone number with illegal characters (spaces, letters, etc.)

should throw a PhoneFormatException.

• A phone number that’s missing dashes should throw a Phone-

FormatException.

• A phone number with multiple dashes should throw a Phone-

FormatException.

• A null phone number should throw a PhoneFormatException.

• A file that doesn’t exist should throw a MissingOrBadFile-

Exception.

• A null filename should also throw that exception.

• An empty file should throw a MissingOrBadFileException.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=198

APPENDIX E. ANSWERS TO EXERCISES 199

• A file that’s not in the correct format should throw a Missing-

OrBadFileException.

Exercise 4: from page 88

An automatic sewing machine that does embroidery. The class

that controls it takes a few basic commands. The coordinates (0,0)

represent the lower-left corner of the machine. x and y increase as

you move toward the upper-right corner, whose coordinates are x =

TableSize.Width - 1 and y = TableSize.Height - 1.

Coordinates are specified in fractions of centimeters.

public void MoveTo(double x, double y);

public void SewTo(double x, double y);

public void SetWorkpieceSize(double width,

double height);

public Size WorkpieceSize { get; }

public Size TableSize { get; }

There are some real-world constraints that might be interesting: you

can’t sew thin air, of course, and you can’t sew a workpiece bigger

than the machine.

Given these requirements, what boundary conditions can you think

of?

Answer 4:

• Huge value for one or both coordinates

• Huge value for workpiece size

• Zero or negative value for one or both coordinates

• Zero or negative value for workpiece size

• Coordinates that move off the workpiece

• Workpiece bigger than the table

Exercise 5: from page 89

Audio/Video Editing Transport. A class that provides methods to

control a VCR or tape deck. There’s the notion of a “current position”

that lies somewhere between the beginning of tape (BOT) and the end

of tape (EOT).

You can ask for the current position and move from there to another

given position. Fast-forward moves from current position toward

EOT by some amount. Rewind moves from current position toward

BOT by some amount.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=199

APPENDIX E. ANSWERS TO EXERCISES 200

When tapes are first loaded, they are positioned at BOT automati-

cally.

using System;

public interface AVTransport {

/// Move the current position ahead by this many

/// seconds. Fast-forwarding past end-of-tape

/// leaves the position at end-of-tape

void FastForward(double seconds);

/// Move the current position backwards by this

/// many seconds. Rewinding past zero leaves

/// the position at zero

void Rewind(double seconds);

/// Return current time position in seconds

double CurrentTimePosition();

/// Mark the current time position with label

void MarkTimePosition(String name);

/// Change the current position to the one

/// associated with the marked name

void GotoMark(String name);

} A
V

Tr
a

n
sp

o
rt

.c
s

Answer 5:

• Verify that the initial position is BOT.

• Fast forward by some allowed amount (not past end of tape),

then rewind by same amount. Should be at initial location.

• Rewind by some allowed amount (not before the beginning of

tape), then fast forward by same amount. Should be at initial

location.

• Fast forward past end of tape, then rewind by same amount.

Should be before the initial location by an appropriate amount

to reflect the fact that you can’t advance the location past the

end of tape.

• Try the same thing in the other direction (rewind past begin-

ning of tape).

• Mark various positions and return to them after moving the

current position around.

• Mark a position and return to it without moving in between.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=200

APPENDIX E. ANSWERS TO EXERCISES 201

Exercise 6: from page 89

Audio/Video Editing Transport, Release 2.0. As above, but now

you can position in seconds, minutes, or frames (there are exactly

30 frames per second in this example), and you can move relative to

the beginning or the end.

Answer 6: Cross-check results using different units: move in one

unit and verify your position using another unit; move forward in

one unit and back in another, and so on.

Exercise 7: from page 163

Design an interest calculator that calculates the amount of interest

based on the number of working days in-between two dates. Use

test-first design, and take it one step at a time.

Answer 7: Here’s a possible scenario of steps you might take.

There is no right answer; this exercise is simply to get you to think

about test-first design.

1. Begin by simply calculating the days between any two dates

first. The tests might include:

• Use the same value for first date and last date.

• Try the normal case where first date < last date.

• Try the error case where first date > last date.

• Try dates that span a year boundary (from October 1 2003

to March 1, 2004 for instance).

• Try dates more than a year apart (from October 1 2003 to

December 1, 2006).

2. Next, exclude weekends from the calculation, using the same

sorts of tests.

3. Now exclude public and/or corporate holidays. This raises a

potentially interesting question: how do you specify holidays?

You had to face that issue when writing the tests; do you think

doing so improved your interface?

4. Finally, perform the interest calculation itself. You might start

off with tests such as:

• Interest amount should never be negative (an invariant).

• Interest when first date equals last date should be 0.0.

http://books.pragprog.com/titles/utc2/errata/add?pdf_page=201

Index

Symbols
0–1–n rule, 82

A
A-TRIP, 117

Accessors, 124

Actual, 34

AddCropMarks(), 162

ADO (mock objects), 109

Agile, 61

Amount of test code, 125

Anonymous array, 19

Arianne 5 rocket, 6

Assert

custom, 77

definition, 34

Assert class, 34

AreEqual(), 34

Assert.AreEqual(), 17

Assert.AreSame(), 36

Assert.Fail(), 37

Assert.IsFalse(), 36

Assert.IsNotNull(), 36

Assert.IsNull(), 36

Assert.IsTrue(), 16, 36, 184

Assert.That(), 39

Assumptions, 80

Automatic, 118

Automation, x

B
Bad magic, 117

Bean, see Enterprise Java Beans

(EJB)

Bearing.cs, 76

Big ball of mud, 137

Blank, 81

Boolean conditions, 16, 36

Boundary conditions, 64, 71

Breaking the build/tests, 134

Broccoli, 1

Bug

see also Debugging; Error

Bugs

clumping, 120, 121

elusive, 187

fixing, 126

identifying likely, 60

in sort routines, 74

isolating, 11, 41

list position, 29, 74

memory, 184

phantom, 122

rewriting due to, 11

traceable to unit tests, 123

Build machine, 118

Business logic, 84, 159

C
C#

library versions, 186

Cardinality, 82

Career limiting move, 12

[Category], 45

checkInvariant(), 78

Clean room, 164

Code examples

finding the source to, xii

Coding

see also Coupled code;

Decoupled code;

Metadata; Source code

control system (SCCS)

Collateral damage, 160

COMMENT 203 FROG

definition, 9

Comment

see also Documentation

Component-based systems, see

Modular system

Concurrency, 84, 86, 187

Confidence, 4

Conformance, 72

Continuous build/integration,

118, 136

Contract

see also Design by contract

(DBC)

Copy and paste, 53, 124

CORRECT, 71

Costs, 11

Coupled code

see also Decoupled code

Coupling, 90, 186

Cross-checking, 67

CruiseControl, 118, 190

CVS, 134

D
Data

see also Metadata

Data structures, 77

Daylight savings time, 85

Debugging, 2, 10

Decoupled code

see also Coupled code

Delphi

see also Object Pascal

Dependencies, 79, 186

Dependency, reducing, see

Modular system;

Orthogonality

Developer sandbox, 122, 128

Documentation

see also Comment; Web

documentation

Don’t repeat yourself, see DRY

principle

Donne, John, 123

DotGNU, 190

DotNetMock, 108–116, 190

Downloading source code, see

Example code

DRY principle, 124, 164

definition, 53n

see also Duplication

Duck, rubber, see Rubber duck

Dynamic mock objects, 101

E
E-mail address format, 72

Elephant

how to eat, 139

Encapsulation, 76, 129

Engineering, 6

Environmental constraints, 68

EqualConstraint, 39

Equality, 16

deceptive, 185

Error

see also Exception

Error conditions, 68

Exception, 30, 34, 54, 56, 81,

140

Excuses, 8

Exercises

A/V transport, 89, 199

fax machine, 88, 198

interest calculator, 163

sewing machine, 88, 199

shopping cart, 87, 196

stack, 86, 195

Existence, 81

Expected, 34

[ExpectedException], 55, 57

Expert, see Guru

External dependencies, 79, 186

Extreme Programming, 128, 139

F
Factory class, 163

fakes, 94

Feedback, xi, 126, 136, 162

Fence post errors, 82

FileAssert.AreEqual(), 52

FileAssert.AreNotEqual(), 52

Files, 94

FilterRanges(), 69

Finally, 155

fixture

definition, 43

Floating-point numbers, 35, 184

Formal testing, 4

Free Software Foundation, see

GNU Project

Frog, boiled, see Boiled frog

GMT 204 ORTHOGONALITY

G
GMT, 85

Good neighbor, 154

“Good-enough software”, see

Software, quality

H
Has.Length(), 40

House of cards, 4

I
IDE, 13, 118

Improving tests, 126

Independence, see Orthogonality

Independent, 49, 122

Indexing concepts, 79

Input data validation, 163

Inspection, code, see Code

reviews

Invariant, 77, 78, 159

on an index, 160

Inverse relationships, 66

Is.AtLeast(), 40

Is.AtMost, 39

Is.Empty, 40

Is.EqualTo(), 39

Is.InstanceOfType(), 40

Is.Not.EqualTo, 39

Is.Null, 40

Is.SubsetOf(), 51

J
JamItIntoPark(), 80

JavaDoc, see Java

K
Kaizen

see also Knowledge portfolio

KitchenOrder(), 75

L
Language, programming

see also Mini-language

Largest(), 17–30

Largest.cs, 18

LargestDataFileTests, 62

LargestTest.cs,

hyperpage41, 19 −−43

LargestTest, 30

Layered system, see Modular

system

Legacy code, 136, 137

Librarian, see Project librarian

Lighting doubles, 90

List.Contains, 51

Logging

see also Tracing

Long-running tests, 185

M
Member variables, see Accessor

functions

Message, 34

Mock objects, 14, 90–116, 118,

186

definition, 91

dynamic, 101

steps to using, 91

MoneyAssert.cs, 53

mono, 190

MyStack.cs, 77–79

MyStackTest(), 78

N
NCover, 120, 190

NCoverExplorer, 191

NMock, 191

NMock2, 105–106

NotConstraint, 39

Null, 36, 81

Numeric overflow, 7n

NUnit, 191

attributes, 45, 49, 55, 57

custom asserts, 53

and exceptions, 54

minimum framework, 41

order of tests, 123

selecting tests, 43

nunit.mocks, 100–104

O
Object identity, 36

Off-by-one errors, 29, 82

Open Source

definition, 21

Ordering, 74, see Workflow

Orthogonality

see also Modular system

PAIR PROGRAMMING 205 [TEARDOWN]

P
Pair programming, 139

Parrots, killer, see Branding

Pay-as-you go model, 10

Performance, 69

Phantom bugs, 122

Postconditions

definition, 80

Pragmatic Automation, x

Pragmatic Programmers

email address, xiv

website, xin

Pragmatic Programming, 191

Pragmatic Starter Kit, ix

Pragmatic Version Control, ix,

134

Preconditions

definition, 80

Private access, 129

Production code, 5, 124

definition, 32

Production system, 14

Professional, 123, 139

Project

see also Automation;

Team, project

Properties file, 146

Protected access, 129

Prototype, 13

Public access, 129

R
Range, 75

Recipe.cs, 151

RecipeFile.cs, 151

Recipes.cs, 146–150

RecipeTest.cs, 153

Refactoring, 146, 186

Reference, 79

Regression, 69

Repeatable, 122

Requirements, 7, 30, 61, 84, 185

Restaurant order, 74

Results

analyzing, 8, 118, 184

Retrospectives, 139

Return on investment, 137

Reviews, 139

Right, 61

RIGHT -BICEP, 60

S
Sample programs, see Example

code

Sandbox, 122, 128

Scientific applications, 35

Self-contained components, see

Orthogonality; Cohesion

SendFax(), 88, 198

Separation of concerns, 143

[SetUp], 49

Setup code

execution order, 50

SharpDevelop, 191

Shell, command

see also Command shell

“Shy” code, 143

Side-effects, 81

Single testing phase, 11

sleep, 144

SleepUntilNextHour(), 143

Smoke test, 183

Software engineering, 6

Sort routines, 74

Source code

documentation, see

Comments

downloading, see Example

code

reviews, see Code reviews

SQL (mock objects), 109

Stand-ins, 90

StandardPaperFactory, 163

Starting a project

see also Requirement

Stream, 94

String constants, 155

Structured walkthroughs, see

Code reviews

Stubs, 92

stubs, 92

SubVersion, 134

Supplier, see Vendor

SVN, 134

Synchronized, 86

Syntax vs. semantics, 13

System.Data, 109

T
Team communication, 140

Team environment, 134

[TearDown], 49

TEARDOWN CODE 206 ZERO

Teardown code

execution order, 50

[Test], 42

Test code

and property accessors, 124

broken, 41, 183, 186

cleanup, 155

compiling, 33

correlate to bugs, 123

and data files, 61

environment, 184

first test, 18

invoking, 118

linear, 124

locating, 129

long running, 185

ordering, 123

vs. production code, 33, 125

required actions, 33

results, 8

reviewing, 140

selecting, 43

testing, 125

Test coverage analysis tools, 120,

121

Test data, 64

Test setup

per-fixture, 51

per-test, 49

Test-driven design, 140, 161

TestAdd(), 127

TestDriven.NET, 191

[TestFixture], 42

Testing

acceptance, 3, 14

and design, architecture,

30, 143

courtesy, 132

environment, 184

excuses, 8

formal, 4

frequency, 135

functional, 14

GUI, 158

metrics, 121

performance, 3, 14

regression, 69, 137

responsibility, 164

see also Unit testing

Text.Matches(), 52

Text.StartsWith(), 52

Thorough, 119

Time, 8, 11, 84, 185

Timeouts, 85

Tolerance, 185

Tracing

see also Logging

Traveling salesman algorithm, 45

U
UML, see Unified modeling

language (UML)

Unit testing

definition, 3

intentional sabotage, 127

potential dangers, 117

using, 42

UTC, 85

V
Validation, 61

and verification, 3, 14

formatted data, 73

input data, 163

user input, 164

Version control, ix, 134

W
Walkthoughs, see Code reviews

Wall-clock time, 85

Whac-a-Mole, 9

Writing

see also Documentation

X
XML, 63

xUnit, 191

Z
Zero, 81

	About the Starter Kit
	Preface
	Introduction
	Coding With Confidence
	What is Unit Testing?
	Why Should I Bother with Unit Testing?
	What Do I Want to Accomplish?
	How Do I Do Unit Testing?
	Excuses For Not Testing
	Roadmap

	Your First Unit Tests
	Planning Tests
	Testing a Simple Method
	Running Tests with NUnit
	Running the Example
	More Tests

	Writing Tests in NUnit
	Structuring Unit Tests
	Classic Asserts
	Constraint-based Asserts
	NUnit Framework
	NUnit Test Selection
	More NUnit Asserts
	NUnit Custom Asserts
	NUnit and Exceptions
	Temporarily Ignoring Tests

	What to Test: The Right-BICEP
	Are the Results Right?
	Boundary Conditions
	Check Inverse Relationships
	Cross-check Using Other Means
	Force Error Conditions
	Performance Characteristics

	CORRECT Boundary Conditions
	Conformance
	Ordering
	Range
	Reference
	Existence
	Cardinality
	Time
	Try It Yourself

	Using Mock Objects
	Stubs
	Fakes
	Mock Objects
	When Not To Mock

	Properties of Good Tests
	Automatic
	Thorough
	Repeatable
	Independent
	Professional
	Testing the Tests

	Testing on a Project
	Where to Put Test Code
	Where to Put NUnit
	Test Courtesy
	Test Frequency
	Tests and Legacy Code
	Tests and Code Reviews

	Design Issues
	Designing for Testability
	Refactoring for Testing
	Testing the Class Invariant
	Test-Driven Design
	Testing Invalid Parameters

	GUI Testing
	Unit testing WinForms
	Unit testing beyond Windows Forms
	Web UIs
	Command Line UIs
	GUI Testing Gotchas

	Extending NUnit
	Writing NUnit Extensions
	Using NUnit Core Addins

	Gotchas
	As Long As The Code Works
	``Smoke'' Tests
	``Works On My Machine''
	Floating-Point Problems
	Tests Take Too Long
	Tests Keep Breaking
	Tests Fail on Some Machines
	Tests Pass in One Test Runner, Not the Other
	Thread state issues
	C# 2.0-specific Issues

	Resources
	On The Web
	Bibliography

	Summary: Pragmatic Unit Testing
	Answers to Exercises

